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Abstract

Double-Fourier-Series (DFS) spectral method is applied to a large-size problem of barotropic insta-
bility of double-shear flow on the sphere. The computing source is the NEC SX-5 parallel vector pro-
cessors, with the maximum vector length of 512. Tt is demonstrated that the DFS spectral model is
robust and stable even for such a large-sized intensively nonlinear problem, and can simulate well the
multiple scale phenomenon without losing accuracy. In addition to the efficiency on serial computing,
represented with O(N 2 log, N) operations as opposed to O(N?) for the spherical harmonics spectral
method, with N the truncation, the DFS spectral model also preserves the efficiency on parallel com-
puting on vector architecture, due to its nature of two dimensional transform. The parallel performance
increased slightly with the resolution, and nearly 33.5 percent (26.8 GFLOPS) of the theoretical peak
performance (80 GFLOPS) was achieved in the highest-resolution experiment.
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The zonal-mean absolute vorticity, of which initial condition is characterized as two peaks in both
hemispheres, evolves with time into a nearly constant value over the hemisphere. On the other hand, the
meridional gradient of the absolute vorticity increases around the equator. The kinetic energy per unit
mass is calculated for each total wavenumber, where a disturbance field of a single total wavenumber
is separated by an 8th-order spherical harmonics filter. Kinetic energy spectrum shows two distinct
subranges, each with a constant slope. The subrange, other than the viscous subrange, shows a slightly
increasing slope with time and approaches {73 (/ is the total wavenumber) in the matured stage, when a
single large vortex is formed. As the resolution increases, the subrange other than the viscous subrange
extends to the higher wavenumber domain, due to low viscosity. Numerical convergence of the solution
with a fixed viscosity is discussed in terms of time averaged zonal-mean statistics of the zonal-flow.

1. Introduction

The computation of atmospheric flows over
the spherical domain requires an elaborate
numerical method to avoid the so-called pole
problem, which is a collective term referring to
the numerical problems near poles arising from
the use of spherical coordinates. In the tradi-
tional Finite Difference Method (FDM) the pole
problem is circumvented by introducing the
Fourier filtering for moderate resolutions, but
it is not certain that it would still be effective
at high resolutions. At higher resolutions, the
global treatment, rather than a local treat-
ment, of the problem may be more essential
(e.g., Spotz et al. 1998; Cheong 2000a,b; Cheong
et al. 2002) in the context of the spurious global
mode inherent in a spherical-domain dynamic
frame.

The spectral method adopting the spherical
harmonics as the orthogonal basis functions,
most widely used for the global numerical
weather prediction models (Gates et al. 1992;
see also  http://www-pemdi.llnl.gov/ amip/
which is lastly updated in Feb 2001), is free
from the pole problem, because the spherical
harmonics provide the even resolution over the
sphere, and the spatial differentiation is per-
formed in the spectral domain. The Spherical
Harmonics Model (SHM), however, has major
drawbacks at high resolution, such as the
huge computational cost and the communica-
tion overhead on distributed memory archi-
tectures. A more serious problem than these
inefficiencies is that the accuracy of orthogon-
ality of the discrete Legendre functions de-
creases at resolutions much higher than the
current models (e.g., Jakob et al. 1995).

The computational difficulties stated above
certainly put restrictions on the maximum
problem size (resolution) even for the two di-

mensional models. Recently, several numerical
methods have been developed to overcome the
minor points of the two major numerical meth-
ods, the FDM and SHM (Ronchi et al. 1996;
Stuhne and Peltier 1996; Taylor et al. 1997,
Spotz et al. 1998; Cheong 2000a). They were
found to give reasonable results to simple or
extended problems. Among them, Stuhne and
Peltier (1996) have vividly demonstrated the
performance of the newly developed method
through the experiments on the strong non-
linear phenomena with an emphasis on the
robustness and resolvability of the compli-
cated dynamic process. The maximum resolu-
tion therein is 163,842 geodesic grids, which
roughly corresponds to the uniform latitude-
longitude mesh of 60 km x 60 km. (Actually,
the number of uniform latitude-longitude
meshes must be 7/2 times larger than that of
geodesic grid cells to provide similar horizontal
resolutions, due to the convergence of the grid
interval off the equator.)

In this study, the two-dimensional numerical
experiment is extended on the shear instability
(Cheong et al. 2002), which is similar to that
in Stuhne and Peltier (1996), but with double
shear zones, to a large problem-size on the
spherical domain. The problem size of concern
exceeds 10® in the number of transform grid
points, giving approximately 3.75 km x 3.75
km resolution (the grid size is smaller than this
by 1.5 times). Though being simple, the solu-
tion of the vorticity equation has important im-
plications in the computational fluid dynamics,
because it includes nonlinear terms and needs
the inversion of (high-order) a Laplacian opera-
tor.

As a computing source the high-performance
computer system NEC SX-5 was used, which
consists of parallel vector processors with max-
imum vector length of 512. Aside from the effi-
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ciency in serial computing, represented with
O(N?log, N) operations per a timestep, as
opposed to O(N?) operations for the spherical-
harmonics methodology with N the model
truncation (Cheong 2000a,b), another impor-
tant issue of interest in this paper is the paral-
lel performance of the DFS spectral method
on the vector architecture (cf., Cortese and Ba-
lachandar 1995).

The barotropic instability of double shear
flow in this study is an extension of the baro-
tropic instability of equatorial westerlies in
Stuhne and Peltier (1996). As demonstrated in
Cheong et al. (2002), to define a global normal
mode is not very useful for the double shear
flow on the sphere because the most unstable
mode for each shear zone has a different zonal
wavenumber. The flow associated with the
instability of strong shears is strongly non-
linear and turbulent (Stuhne and Peltier 1996;
Cheong et al. 2002). It will be of interest to see
the kinetic spectrum of such a turbulent flow in
a large-size problem. Yoden and Yamada (1993)
studied the 2-dimensional decaying turbulence
on the sphere, where the viscosity is given as
a biharmonic operator and the kinetic energy
spectrum was given a priori as a function of
the total wavenumber. In their simulation, the
spectral peak shifts toward low wavenumber
as the time elapses. In the present study, a
strong zonal shear is given initially, therefore
it is not certain whether such a shift of peak-
wavenumber and/or the same slope for the ki-
netic energy will be observed or not.

2. The vorticity equation and the double
Fourier series spectral method

Details of the numerical simulation on the
barotropic instability are the same as Cheong
et al. (2002) with an exception that the hyper-
viscosity is used in this study. With scaling the
variables by the rotation rate and radius of the
Earth, the vorticity equation on the sphere is
written as

o¢ -1 [0 . 0 6

i st g (MU;H— sin ¢6¢V17} +wW°(, (1)
where / is the longitude, ¢ = /2 + latitude, and
n=Ff+{ with f(=—-2cos¢) and { being the
Coriolis parameter and the relative vorticity,
respectively. U = u sin ¢ and V =v sin ¢ with
u and v being the longitudinal and latitudinal
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component of the velocities, respectively, and
v is the coefficient of hyperviscosity. Introduc-
ing the centered time differencing, the vorticity
equation can be time marched with an implicit
time-stepping with respect to the viscosity term
as

1- yVF’]C(”“) — ¢(P=1) 4 2AtR(P), (2)

where R is the advection term, At is the time-
step size and y = 2vAt. The superscripts denote
the timesteps.

The dependent variables are expanded with
the truncated double Fourier series (Cheong
2000a,b), e.g.,

N
ng,n cos ng
n=0

for m =0,

N
ng,n sin n¢
n=1
for odd m,

gm(4) = 3)

N
ng,n sin ¢ sin n¢
n=1

for even m(# 0),

where gn(#) represents the zonal Fourier
transform of g(4,4). N is the maximum
meridional-wavenumber or the truncation,
which is set the same as the zonal-wavenumber
truncation M.

Transform method is used for the evalua-
tion of the nonlinear terms (Orszag 1970;
Cheong 2000a), and the number of transform
grid points, with uniform latitude-longitude,
is given as (I x J) = (2% x 2¥71), where if not
otherwisely stated we take k = 12,13, and 14.
The maximum wavenumbers adequate for each
grid resolution are determined by the 2/3 rule
(see Table 1 for model parameters). To deter-
mine an appropriate value of the viscosity co-
efficient v is rather difficult (see also Stuhne
and Peltier 1996), because the flow field is
sensitive to the viscosity and the flow field
in turn affects the numerical stability for a
given time-step size. Through experiments with
wide range of parameters we found that the
minimum viscosity should be given v=
(100/27)[3.75%2M/170-1) (AL (M + 1)]* for stable
time-integration in this problem. The viscosity
coefficient v in Table 1 is larger than this value

NI | -El ectronic Library Service



Met eor ol ogi cal

Soci ety of Japan

1304

Table 1. Wavenumber truncations and
the number of transform grid points.
The viscosity is presented in nondimen-
sional unit.

time-
step
(A?)

32sec|0.190 x 1015
16sec|0.113 x 1016
8sec|{0.600 x 1018

transform
grids (I x /)

viscosity total 1

model
() memory

M1364
M2728
M5460

4096 x 2048
8192 x 4096
16384 x 8192

2.0 GB
9.7GB
32.1GB

for each resolution. Although the timestep size
used in this study is slightly in excess of that
estimated by the CFL criteria for the spectral
model, the time integration could be done
without numerical instability because the small
scale disturbances near the truncation limit are
severely dampened down by the hyperviscosity.

Note that the memory requirement for
M5460 resolution is as large as 32 GB even
though two dimensional problem is solved, but
this is not surprising if it is considered that the
array size for a field variable exceeds one GB.
In the case of the spherical harmonics model,
the memory space for M x N x (J/2) elements
is necessary to store the associated Legendre
functions and their derivatives, which corre-
sponds to nearly 1,000 GB for double precision
arrays.

Although being possible, the reduced grids
near the poles (Hortal and Simmons 1991) are
not used in this study, because it could invite
the computational inefficiency in the aspect of
the vectorization of the codes. Instead, the po-
lar Fourier filtering in the zonal-Fourier space
is carried out to achieve the almost even reso-
lution over the sphere:

M sin ¢

sin(n/6) )

8m(¢) — 0 for |m| >

The equivalent mesh sizes are approxi-
mately 15 km x 15 km, 7.5km x 7.5 km and
3.75 km x 3.75 km for M1364, M2728 and
M5460, respectively, while the grid sizes, cal-
culated by dividing 2zx Earth’s radius by zonal
grid number, are smaller than these by about
1.5 times.

The initial conditions for the zonal mean
flow, and the absolute vorticity, are the same
as Fig. 3 in Cheong et al. (2002). The model is
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Table 2. Details of the computing
source used in this study

model NEC SX-5
number of CPU 8
theoretical peak performance 80 GFLOPS
system memory 128 GB
vector resister length 512

run for 100 model-days for all resolutions ex-
cept that M5460 case is run for 50 model days,
due to the limitation of computing power. One
timestep needs floating-point operations as
many as 48 x 10% for M5460 resolution. There-
fore such a heavy computational task can only
be accomplished by the high-performance com-
puters.

3. Optimization of the codes

Details on the computing source used in this
study are presented in Table 2. Since NEC SX-
5 consists of Parallel Vector Processors (PVP),
the optimization of the codes can be done in
two contexts: the vectorization and parallel
implementation. Parallel implementation was
carried out in two ways: One is the Open Spec-
ifications for Multi-Processing (OpenMP, Chan-
dra et al. 2000; see also the web page www.
openmp.orgl), and the other is the micro-task
directives. Both are suitable for a shared-
memory architecture such as NEC SX-52. It
was revealed that the parallel performance for
both cases was almost the same for the problem
treated in this study. Obviously, the vectoriza-
tion is of a primary importance because the
number of the vector resistors within a CPU is
larger than the number of CPU by nearly two
order. The parallelism is given in the next sec-
tion. To enhance the computational efficiency
as much as possible, the elaborate program-
ming techniques (e.g., Sabot 1995; Ilin and
Scott 1996) were fully taken into consideration.

The overview of the vorticity-equation solver
for one time-stepping is illustrated in Table

1 This web page is managed by the OpenMP Ar-
chitecture Review Board.

2 Details on the multi-tasking are found at
FORTRAN90/SX Multitasking User’s Guide,
NEC Corporation; http://www.atmosp.physics.
utoronto.ca/SX5/docs/g1af08e/frame.html.
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3. The operation count for all steps is O(N )
except for the FFT routine, which needs
O(N? log, N) operations. It is found that most
of the computing time is used for six modules.
Consequently the optimization of these mod-
ules will be a key factor to get an optimized use
of the NEC SX-5. By the functions, the seven
modules are classified into three categories,
the double FFT, inversion and nonlinear terms
evaluation. The major two categories are ex-
plained below in some detail.

3.1 Double FFT (Fast Fourier Transform)
over the sphere

The transform from the grid to spectral
space, X(i,j) — X(m,n), is carried out using
double FFT, which consists of five steps as
shown below. The inverse transform is done in
the reversed order. Both transforms are per-
formed in the module SUB_2, which is called
totally five times per one timestep from the
main program, and the subroutine SUB_6
(used for evaluation of advection terms), as
shown in Table 3.

(i) Transpose the array of grid data
(Xi,j — Xj.i)

(i) Fourier transform in longitude
(X;j; — Xjm) by calling SUB_3: SUB_3 is a rou-
tine for the Fourier (inverse) transform of two
dimensional real data with the length being
a power of 2. It calls SUB_1, a routine for the
complex Fourier transform. In this step J
transforms are necessary. All routines are
readily vectorized by taking ‘the do loop for the
first array axes as the innermost loop nest
(Sabot 1995). Although the vectorization pro-
cess requires a two-dimension data movement,
instead of one-dimension data for a sequential
processing, it does not cause a serious problem.

(iii) Polar Fourier filtering of (X;,) as in
Eq. (4)

(iv) Transpose the array of zonal Fourier
transform (Xj,, — Xm,;) and combine the odd
and neighboring even zonal-wavenumber
Fourier components to make a 2z-length data
(that is, M sets of 2J data points).

(v) Fourier transform in latitude
(Xpm,j — Xm,n) by calling SUB_3 again: Only M
transforms are necessary in this step.

3.2 Inversion of tri- or pentadiagonal matrices
The step (ii) in Table 3 is the inversion of tri-
diagonal matrices, while the step (xii) inverts
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Table 3. Overview of the vorticity-
equation solver for one time-stepping.
The subscripts (i,j) represent the
grid indices and (m,n) the wave
indices.
step procedure method
6 ¢ =G (FFT)
(i) C,(,f)n —Ymn (inversion)
(iii) Vmn = Unn
@iv) Ymn = Vimn
W) Unpn— Ui (FFT)
(vi) Vin — Vij (FFT)
(vii) Upj Gj—Xij
(viii) Vij-Gj—Yij
(ix) Xi ;i — Xmon (FFT)
(x) Yii—Ynn (FFT)
e
(xi) Xpn ¢ = Zon
Ym,n
(xii) Zmn — CSEFY (inversion)

Table 4. CPU time for one timestep
and execution rate on a single CPU of
NEC SX-5. The numerals in the pa-
renthesis are the relative execution
time to that for M1364.

iesolu tion Execution time | Execution rate
(second) (MFLOP)
M1364 0.549 (1.00) 4,790
M2728 2.285 (4.16) 4874
M5460 9.632 (17.54) 4975

the pentadiagonal matrices. The matrices are
time-invariant during the time integration,
thus a prehandling of them will help reduce
the operation count. An example for the tri-
diagonal matrices is given in the Appendix. The
routine for the pentadiagonal matrices inver-
sion is similar to the tridiagonal case, but the
operation count is nearly doubled. An updated
pentadiagonal matrices solver can be found in
Cheong et al. (2004).

4. Computing time and parallel
performance

In Table 4, the overall performance of the
NEC SX-5 on the vorticity-equation solver
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timesteps required for the major six
subprograms included in the vorticity-
equation solver with DFS. The numer-
als in the box denote the number of
longitudinal grid points. The functions
of the subroutines above are, from left
to right, the complex FFT, transform of
variables for complex- or real-FFT, real
FFT, high-order spectral filtering, in-
version of Laplacian operator, and eval-
uation of advection terms, respectively.

is presented in terms of the CPU time and
floating-point execution rate. First it is noted
that the execution time for one timestep in-
creases with the resolution, closely following
the theoretically expected operation count
O(N?logy N). The execution rate increases
slightly with the resolution, which demon-
strates a desirable scalability of the programs®.
The mean execution rate for these resolutions
is nearly half of the theoretical peak perfor-
mance of a CPU. In average the Vectorized
Operation Ratio (VOpR), being a measure of
the efficiency available through vectorization,
reaches about 99.7% for all resolutions.

Real execution times for the major six
modules are shown in Fig. 1 for three model
resolutions. The ratios of the major three

3 Definition of the scalability of a program or a
scalable program includes also the portability of
a program across different architectures (Sabot
1995).

Fig. 2. Variation of speedup with the
number of CPUs used for three reso-
lutions. The numerals denote number
of the zonal gridpoints.

modules, SUB_1, SUB_2 and SUB_3 (see the
figure caption for the function of these sub-
routines), to the total CPU time are 70%, 15%
and 8%, respectively, which do not vary sub-
stantially with the resolution, indicating that
all modules are well vectorized and scalable.

For the vector architectures, the parallelism
can be implemented in two ways in the case
of a multi-dimension problem, depending on
what level do-loop is split. One is to split the
innermost (lowest) do-loop, and the other is to
split the higher level of loop nest. It appears
that the second choice will be better, because
the first method can harm the vector execution
by shortening the length of the lowest level do-
loop. In spite of this fact, we adopted the first
method for a certain routine such as FFT,
which inherently renders difficulty in parallel-
ism (see Press et al. 1996). Fortunately, even in
that case, such a disadvantage is rather low
because the vector length of the innermost do-
loop is quite long.

In Fig. 2 the variation of CPU time with the
number of CPU is presented. Speedup factor
is very close to the ideal parallel performance
for two CPUs, but the performance gap be-
tween the ideal performances becomes large

NI | -El ectronic Library Service



Met eor ol ogi cal

Soci ety of Japan

October 2004

as the number of CPU increases. Nevertheless,
a maximum speedup by a factor of 5.55 is
achieved for 7 CPUs at Mb5470 resolution,
which is considered as a desirable parallel
performance®. This again shows a fairly good
resolution-scalability of the programs. It is
worthy noting that the parallel-speedup slowly
decreases as the resolution decreases, being
considered as a direct consequence of the first
method chosen for FFT routine stated above.

5. Results of the simulation

In this section, some simulation results are
presented. The advantage of using a very-high-
resolution model would be the reproducibility
of the multiscale phenomena interacting one
another within a single dynamics. Therefore,
it must be of a central importance to compare
how the small scales are well resolved in the
high-resolution models. A typical time evolu-
tion of the vorticity field, with the resolution
M340, is illustrated in Fig. 4 of Cheong et al.
(2002): In the first few days the unstable waves
develop as a result of shear instability with
dominant wavenumber of 7 or 8 in low latitude
shear-zone, which finally grow into isolated
vortices. During model days from 6 to 10 an in-
tense interaction among vortices and the gen-
eration of small-scale vortices are observed.
In all experiments, the final stage of the flow
evolution is characterized by the formation of
a large single vortex, although the location and
the structure are different from experiment to
experiment (see also Stuhne and Peltier 1996)
due to the strong nonlinear nature of the flows.

The left column of Fig. 3 presents the abso-
lute vorticity field at day 6 for three resolu-
tions, with the northern-hemisphere stereo-
graphic projection, where large-scale features
are dominant. Since the overall synoptic pat-
tern is of concern, the contour values are

4 The parallel performance decreases at 8CPUs
case. This corresponds to the case using total
CPUs available. We additionally carried out the
same computations on the NEC SX-5 system in
the Korea Meteorological Administration. Even
in that case, if all CPUs (i.e., 16 CPUs) are used
for parallel computing, such a decrease in
speedup is observed at the 16 CPUs case. This is
because one CPU is allocated to the administra-
tion of the parallel computing when all CPUs
available are used.
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omitted in this map. Although they look similar
to one another, detailed distribution of the ab-
solute vorticity differs substantially, which is
an indication of chaotic behavior of the dynamic
system, because the initial conditions are actu-
ally the same. Shown in the right column of
Fig. 3 are the absolute vorticity over a small
domain, which is between 14N and 37N in lat-
itude and extends over 26 degrees in longitude,
respectively. It is clear that the vortex elon-
gates more as the model resolution increases.
That is, thinner vortex-filaments are observed
at increased resolutions, as it was expected to
be. On the other hand, thin vortex filaments for
low resolutions are easily dissipated due to rel-
atively large viscosity.

The high-resolution simulations well produce
the isolated vortices of small-scale, which is re-
flected in the kinetic energy spectrum pre-
sented below. In some cases of high-resolution
simulations, second barotropic instability oc-
curs in the course of rolling up of the thinning
vortex filaments, of which related scale is one
or two order small compared to the unstable
waves developing by the initial zonal shear (see
Fig. 4). This instability is due to the large vor-
ticity gradient as manifested by the multiple
spiral bands of red-colored filament over the
northern edge of the large vortex.

Incorporation of the viscosity in the model is
generally two fold: One is to mimic simply the
physical dissipation mechanism, and the other
is to maintain the numerical stability. For the
second purpose, the viscosity must be as small
as possible. However, too small numerical-
viscosity does not contribute to the stability
of the model at high resolutions, while the
viscosity either physical or numerical invites
unwanted damping of the conserved quantity.
Therefore, the loss of a conserved quantity dur-
ing time integration is another reasonable
measure of the model performance.

Table 5 presents the total kinetic-energy
(TKE) loss for selected days, normalized by the
initial TKE. By day 50 the model M2728 con-
serves the kinetic energy with the loss of only
about 0.01% of the initial value, although the
viscosity was not taken as the minimum level
allowed for each resolution. This suggests that
the TKE can be better conserved by diminish-
ing the viscosity. It is worth noting that the
TKE loss becomes smaller with the resolution,
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Fig. 3. Absolute vorticity field at day 6, scaled by the rotation rate of the Earth. Left column: global
pattern with the northern-hemisphere stereographic projection. Right column: zoomed view of a
small area, whose map domains are between 14 N and 37N in latitude and extend over 26 degrees
in longitude, respectively. From above, the resolutions are M1364, M2728 and M5460, respectively.

which implies that the conservation property is beyond day 50 the TKE does not vary sig-
not saturated even for such a huge problem nificantly, because the intense nonlinear inter-
size. Of course, we believe that this result can  action in the flow field was almost finished be-
not be extended to general cases. Not shown, fore day 50.
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Fig. 4. Absolute vorticity field at 11.2 day
for M5460, scaled by the rotation rate
of the Earth. Map domain is (33.03N,
116.5 E)-(44.03 N, 139.0E).

Some important aspects of the simulations,
either in numerical or dynamical view point,
are described below.

5.1 Vorticity mixing

The model used in this study is the vorticity
equation in which the global mean absolute
vorticity is conserved with time in the absence
of viscosity. On the other hand, the unstable
waves developing at the shear zone modify the
zonal-mean flow through zonal momentum ex-
changes. As a result the shear of the initial
zonal-mean flow becomes weak. Figure 5 pre-
sents the zonal-mean absolute vorticity at
selected days for various resolutions. By day
5, the peaks of zonal-mean absolute vorticity
almost disappears. Beyond day 10, a nearly
constant value is observed within a hemisphere
with small-scale fluctuations. That is, the abso-
lute vorticity is well distributed over the hemi-
sphere by the turbulent motions accompanying
the breaking of barotropic unstable waves. By
day 50, the small-scale fluctuations almost dis-

1.-H. KWON et al.
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Latitude

Absolute vorticity

Fig. 5. Zonal-mean absolute vorticity at
selected days for M2728, scaled by the
rotation rate of the Earth.

appeared, leaving a very smooth variation of
absolute vorticity with latitude. The time vari-
ation of the absolute vorticity around the equa-
tor is somewhat different: Its meridional gradi-
ent becomes larger than the initial stage,
probably due to the vorticity homogenization
in positive (negative) value in the northern
(southern) hemisphere.

5.2 Numerical convergence of the solution

As we have seen above, the high resolution
run with small diffusion captures the fine
structure of the flow field which can not be ob-
served in low resolution simulations. Any dif-
ference of physical parameters in the vorticity
equation brings about the difference in the so-
lution. From the viewpoint of solution of partial
differential equation, it would be important to
see how the numerical solution converges with
a fixed diffusion coefficient. Since the flow field

Table 5. Normalized total kinetic energy loss with time

time (day)
resolution
1 2 5 10 20 30 50
M1364 | 0.75E—7 | 0.11E-5 | 0.41E—4 | 0.11E-3 | 0.18E-3 | 0.20E-3 | 0.24E—-3
M2728 | 0.24E—6 | 0.87E—6 | 0.19E—4 | 0.46E—4 | 0.87E—4 | 0.10E-3 | 0.12E-3
M5460 | 0.22E—5 | 0.34E—5 | 0.63E—5 | 0.99E—5 | 0.14E—4 | 0.21E—4 | 0.33E—4
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is chaotic, we do not expect that the flow fields
for different resolutions are the same at a fixed
temporal position. The convergence of solution
is often checked by comparing the zonal-time
mean statistics for such a chaotic system (e.g.,
Held and Suarez 1994).

For this comparison, the nondimensional vis-
cosity v is given as 6.479 x 10~13 for all reso-
lutions, and the data are sampled with 0.1 day
interval. Figure 6 presents the zonal-mean
zonal flows, averaged in the period from day
70 to day 100, for three low resolutions of
I =512,1024 and 2048, along with the initial
zonal-mean profile. The initial zonal-mean flow
is modified to a large extent almost in the
global domain, as stated above. The equatorial
westerly, however, is almost unchanged in
spite of the presence of strong vortices which
move in a wide range of latitudes. Note that the
zonal flow for I = 1024 is different from that
of I =512: The maximum difference reaches
about 10 m/s at middle latitudes. However, the
difference decreases to a fairly lower level in
all latitudes for the cases I = 1024 and 2048.
The largest value falls within a couple of m/s.
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As described above, in the final stage a large,
single migrating-vortex is formed. In relation
with this vortex, the zonal-mean flow has time-
fluctuation, with a period of nearly 10-days.
Considering that the amplitude of fluctuation
exceeds 15 m/s (not shown), the difference be-
tween I = 1024 and 2048 is not regarded to be
significant.

5.3 Energy spectrum of the flow field

In the simulations, the total kinetic energy
dissipates monotonically with time because no
energy source exists and the hyperviscosity is
included. The energy spectrum for the decaying
turbulent is of interest in the geophysical-
fluid point of view. In order to see the kinetic
energy spectrum with the horizontal scale, we
must decompose the flow field into each hori-
zontal scales. On the spherical surface a two-
dimensional scale is well defined in terms of
the total wavenumber [/ as in the spherical
harmonics P}"(sin 0) exp(im/), where 0 is the
latitude. Decomposition of the global data into
the spherical-harmonics components can be
done via the Gauss-Legendre transform. This
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Fig. 6. Zonal-mean of the zonal flow, averaged for 30 days from day 70 to day 100. The viscosity is
given the same value for all cases shown in this figure.
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requires a huge computation as well as the
calculation and storage of the spherical har-
monics, particularly for the high-resolution
data. In this study, as an alternative, we incor-
porate the 8th order spherical-harmonics spec-
tral filter with DF'S, which can provide a sharp
cutoff of the wave components smaller than a
prescribed scale (Cheong et al. 2004).

To separate a certain horizontal-scale, say
1, from the vorticity field {, two times of high-
order spherical-harmonics filtering are re-
quired:

(1 + alvlﬁ)él = C>
(1+a/ VG =¢,

where a; = 2/[I(1+1)%, a7 = 2[(1+ 1)1 +2))°,
and (; and {; represent the filtered variables.
Then, the difference between two filtered fields
le (= (] — () consists of a single horizontal scale
l. The velocity field of this scale is calculated
from le using the diagnostic relations between
the streamfunction and vorticity, and the ve-
locities and the streamfunction. The inversion
of the high-order elliptic equations in (5) is
accomplished by splitting the high-order Lap-
lacians into multiple Laplacian operators with
the complex coefficient (Cheong et al. 2004).
Figure 7 shows the distribution of Kinetic
Energy (KE) per unit mass with the horizon-
tal scale for different resolutions at day 10. It
is clear that KE curves for different resolu-
tions exhibit similar distributions for low total-

(5)

1e+b
1e+4 4
1e+3 4
1e+2 4
1e+1
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1e-2
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1e-8

Kinetic Energy

1 10 100 1000 10000
Wavenumber

Fig. 7. Distribution of Kinetic Energy
per unit mass as a function of the
total wavenumber at day 10 for M1364
(4096), M2728 (8192) and Mb5460
(16384), respectively.
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Fig. 8. Distribution of Kinetic Energy per
unit mass as a function of time at se-
lected days for the resolution of M1364
(I = 4096).

wavenumbers, but different distributions for
high wavenumbers. As is expected, the high-
resolution case shows a higher-level KE at high
wavenumbers due to the low viscosity. One can
easily find two distinct wavenumber subranges,
each having a constant slope: One is the sub-
range 10 <[ < Ly, where L, is about 300 for
I =4096 but increases as the resolution (for
convenience, referred to as subrange I). In this
subrange KE curve is slightly steeper than the
12 curve, being estimated as [~7/3 (cf. Yoden
and Yamada 1993). The other is the subrange
near the largest wavenumber (truncation limit)
of the models, where the slope falls between [~°
and /=7 (for convenience, referred to as sub-
range V).

Figure 8 presents the distribution of KE
per unit mass with the horizontal scale at vari-
ous time stages for I = 4096. Except the initial
stage, all curves exhibit very similar distribu-
tions one another, but with decreasing KE level
at later time stages, due to viscosity. Initial KE
in the wavenumber interval around 5 <1 < 70
is redistributed to the high wavenumber do-
main. However, KE at [ <5 is almost un-
changed with time, except that KE has de-
creased quite a little. Although KE decreases
with time, the slope of the subrange V remains
almost unaltered. The slope in subrange I,
however, increases slightly with time and the
slope at day 50 is very close to 73, around
20 <1 < 300.
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It would be worthy to compare the results to
those of Yoden and Yamada (1993), where de-
caying two-dimensional turbulence was inves-
tigated numerically. They adopted a viscosity
of biharmonic operator. The slope for subrange
I in Yoden and Yamada (1993) is larger than
that of this study, whereas the slope for sub-
range V is smaller than this study. Of course,
the whole wavenumber range in Yoden and
Yamada corresponds to the subrange I in this
study, because the resolution in this study
is higher by one or two orders. If we adopted
a lower resolution model than those shown in
Figs. 7 and 8, it is certain that the high-
wavenumber part of subrange I in Figs. 7 and
8 is divided into two subranges. Unlike the re-
sult of Yoden and Yamada (1993), the shift
of spectral peak toward low wavenumber was
not found in our cases. The spectral peak asso-
ciated with the zonal shears (the first peak of
initial stage in Fig. 8) does not change signifi-
cantly with time, while the second peak asso-
ciated with the initial perturbations disappears
during time evolution.

As stated above, the slope approaches /3 in
the later stage, but the wavenumber range in
this study is much broader, and shifted toward
smaller scales compared to that of Yoden and
Yamada (1993), probably because of difference
in model resolution and resolution-dependent
viscosity. Note that the final stage of Yoden and
Yamada (1993) is characterized by multiple
large-scale vortices, while in the present study
it is characterized by a single large vortex in
each hemisphere.

6. Conclusions

We have applied a very high-resolution DFS
spectral model to the two dimensional shear
instability on the sphere, where the equivalent
grid size is approximately 3.75 km x 3.75 km
(16384 x 8192 transform grids) for the highest
resolution. It was demonstrated that the DFS
model performs with high accuracy (well con-
serving KE) and efficiency even for the large
problem size without any numerical instability.
Since the solution of vorticity equation, though
being simple, requires important algorithms
such as inversion and nonlinear terms evalua-
tion, the results suggest that the DFS spectral
method could be extended to the 3 dimensional
problem with ease.
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Global absolute-vorticity fields associated
with the shear instability of double shear flow,
were found to be similar to one another for the
three resolutions (M1364, M2728 and M5460)
because the large scale pattern is dominant.
However, it was possible to find clear differ-
ences among the vorticity field simulated with
different resolutions. As the resolution in-
creases, more elongated (or thinner) vortex fil-
aments were observable along with the small-
scale isolated vortices. For low resolutions, thin
vortex filaments are easily diffused away, due
to relatively large dissipation rate compared to
the high resolution simulation.

A test for the numerical convergence of the
solution in terms of the time-averaged zonal-
mean flow indicated a good convergence prop-
erty, in spite of flow pattern itself fluctuates
with a large amplitude.

The kinetic energy per unit mass showed two
distinct subranges, each with a constant slope.
For the subrange V (near the short wave limits;
viscous subrange) the slope does not change
significantly with time. On the other hand, the
slope for subrange I (longer wave range beyond
the subrange V) becomes steeper with time,
and it approaches [™3 for the total wave-
numbers between 20 and 300 in the later stage,
when a single large vortex is formed. As the
resolution increases, the subrange other than
the viscous subrange extends to the higher
wavenumber domain, due to low viscosity. The
high resolution model used in this study made
it feasible to get a KE distribution under a
single dynamical system over a broad wave-
number range, even from 1 to about 5000 in
total wavenumber on the sphere.

Through a series of numerical simulations on
NEC SX-5, parallel vector processors having
maximum vector length of 512, it was shown
that the DF'S model is reasonably scalable over
the wide range of problem size, and also satis-
factory in the aspect of parallel speedup: The
CPU time closely follows theoretically expected
value and the execution rate increases slightly
with the resolution. The execution rate is 4.8
GFLOPS in average, being 48% of the peak
performance, when one CPU is used. The par-
allel speedup increases with the resolution
and reaches the maximum value of 5.55 at 7
CPUs for the highest resolution, but the scaled
speedup decreases with the number of CPU.
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When the problem becomes more compli-
cated, the parallel performance obtained in this
study may be changed. However, since the
major algorithms constituting the DFS model,
the inversion and double Fourier transform,
can be programmed with two dimension array,
in practice the easiness and efficiency of paral-
lel implementation will be still reserved along
with the efficiency in the serial computing.
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Appendix

Inversion of the N/2 x N/2 tridiagonal matrix
A in the linear equations Ax = B is considered,
where x and B are column vectors of N/2 ele-
ments. Although the algorithm for the band-
diagonal matrices inversion is well known (e.g.,
Press et al. 1996), a detailed program is illus-
trated with an emphasis on the loop-ordering,
because the problem considered in this study
formally deals with the four dimension data.
The matrices for all zonal wavenumbers are
stored in a single array A(M/2,3,N/2,4) to fa-
cilitate the vectorization. (The wave compo-
nents are divided into four categories as the
last array axes depending on whether the zonal
and meridional wave indices are even or odd.)
Be sure that for all m, A(m,i,n,j)=0 with
(i,n) = (3,1) and (3,N/2). Then, the vectorized
routine to modify A into the upper 2-band di-
agonal matrices is given as following. In this
code, the loop-ordering for the second and third
index was determined with care to maximize
the efficiency of the computations (see Sabot
1995).

DO j=1,4
do n0=1,N/2-1
nl=n0+1
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do m=1,M/2
ram=A(m,1l,nl,j)/
A(m,1,n0,3)
A(m,1,n0,3j)=A(m,1,n0,Jj)*ram
A(m,2,n0,3j)=A(m,2,n0,J)*ram
A(m,2,nl,j)=A(m,2,nl,j)-
A(m,2,n0,3)
A(m,l,nl,j)=A(m,2,nl,j)
A(m,2,n1,j)=A(m,3,n1,j)
A(m,3,n0,j)=ram
end do
end do
END DO

Note that the second array axes is not loop-
nested to maintain the vector execution for the
first array axes. This should be also the case
for the pentadiagonal matrices inversion where
the array size of the matrix is A(M/2,5,N/2,4).
The vector B has to be modified before the
backward substitution to solve for x using the
elements stored in the array A.

DO j=1,4
do n0=1,N/2-1
nl=n0+1
do m=1,M/2
B(m,n0,3j)=B(m,n0,j)*A(m,3,n0,])
B(m,nl,j)=B(m,nl,j)=-B(m,n0,J)
end do
end do
END DO
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