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Abstract

  When  a  basic flow with Iinear or  axial  symmetry  has a  region  ofnegative  potential vorticity  (hereafter
PV),  such  a  disturbance with  the same  symmetry  as  the basic fiow grows that converts  the negative  PV

of the region  into non-negative  PV. This is the so-called  symmetric  instability.

  In this note,  the fo11owing is shown  in a nondissipative  adiabatic  system.  Irrespective of  the symme-
try, disturbances grow in the region  of  negative  PV, That is, irrespective of the symmetry,  a  flow with
negative  PV  is unstable.  This statement  is based on  the conservation  law of  absolute  circulation  around

a  material  closed  curve  on  the isentropic surface.

1. Introduction

 As is well  known, when  a  basic fiow with lin-
ear  or  axial  symmetry  has a  region  of  negative

potential vorticity  (PV hereafter), such  a  dis-
turbance  with  the same  symmetry  as  the basic
flow grows that converts  the negative  PV  into
non-negative  PV  (e.g., Holton 1992).

  For mathematical  simplicity,  a  Y-symmetric
basic state  on  an  f plane is considered.  The
basic velocity  has only  the Y-component
V=V(Z,X),  which  depends only  on  (Z,X),
Here, CX,Y,Z) are  the Cartesian coordinates,

The basic potential temperature  e ==  e(Z,X) is
also  independent of  Y, As usual,  the vertical
wind  shear  eV7"Z is set  to be positive, and

therewith eO/EIX is positive, because of  the
thermal  wind  relation.

  By  assumption,  the absolute  vorticity

f+OV!aX -  (fi!ilX)(fX+V) -  eMfilX is posi-
tive (otherwise the basic flow becomes inertially
unstable).  Here, M=  fZX+V is so-called  the
absolute  momentum  ofthe  basic state.  Further,
by assumption  aevOZ is positive (otherwise the
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basic fiow becomes statically unstable).

  In this case,  the fo11owing can  be shown.  Ifthe
Y-component of  the vector  product of  Ve  and

VM  is negative,  i.e., the  iso-e surface  is steeper

than  the iso-M surface,  the Y-independent
disturbance in  the (Z,X) plane grows. The
negativity  of  ev  ･ (Ve × VM)  ==  O(e,M)!tt･(Z.X) is

equivalent  to the  negativity  of  the  basic PV.
Here ey  is the unit  vector  in the Y-direction
(e.g,, Holton 1992), The  symmetric  instability

was  extended  to include moist  processes Ccalled
moist  symmetric  instability), in order  to ex-

plain frontal rainbands  (e.g,, Benetts  and  Hos-

kins 1979; Emanuel  1983).

  The  above  eonclusion  depends crucially  on

the symmetry  assumption  of  the basic state.

However, instability itself of  a  basic flow with
negative  PV  seems  not  to depend on  the sym-

metry  Calthough the grewth  rate  etc.  are  of

course  dependent on  the form ofthe  basic flow).
That is, even  in the absence  of  symmetry,  dis-
turbances seem  to grow  in the region  of  nega-

tive PV  (e.g., Dixon et  al. 2002; Mecikalski and
Tripoli 2003),

  Symmetric instability without exact  sym-

metry  was  already  studied  by some  authors,

For  the conventional  symmetric  instability, a

steady  symmetric  basic flow on  an  f-plane is
assumed,  Sun (1994) considered  a  steady  sym-
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metric  basic fiow on  a  fi-plane. He  showed  that

the growth  rate  is enhanced  or  decreased ac-
cording  to the temperature  gradient in the  hor-
izontal direction normal  to the symmetry  di-
rection.  Clark and  Haynes (1996) considered  a

steady  and  slowly  varying  basic fiow. The ad-

jective 
"Slowly

 varying"  means  that the basic
flow is nearly  symmetric.  They showed  that the
small  deviation from exact  symmetry  causes

the maximum  growth rate  at  finite vertical

wave-number,  rather  than at  infinite wave-

number,  as  the conventional  case,

  In this note,  the fo11owing is shown  in a  non-

dissipative adiabatic  system  on  the rotating

earth.  Disturbances grow  in the region  of  nega-

tive PV, Whether  the basic state  is symmetric
or  not,  has nothing  to do with  the reasoning.

The  reasoning  is based on  the conservation  law
of  absolute  circulation  around  a  material  closed

curve  on  the iso-e surface,  This law is, of  course,

equivalent  to the conservation  law ofPV.  First,
in section  2, the hydrostatic case  on  an  f-plane
is considered,  and  then in section  3, the general
case  is considered,

2. Hydrostaticcaseonanf-plane

2.a Conservation ofabsotute circulation

  When  the vertical  gradient of  the potential
temperature  e is everywhere  positive, it is pos-
sible  fbr e to be the vertical  coordinate.  Then
the nondissipative  adiabatic,  and  hydrostatic
horizontal momentum  equation  on  an  f-plane
is written  as

  dvfdt =  -VHO  -  fe × v,

  d!dt-O!Ot+v･VEi. (2-1)
Here,tis  the time,  v  is the  horizontal velocity,

VH is the horizontal partial differential opera-

tor on  the iso-e surface,  ¢  is the Montgomery
function, f is the Coriolis parameter, and  e  is
the unit  vector  in the upward-vertical  direction.
The Montgomery  funetion is the sum  of  the

geopotential and  enthalpy,

  From  (2-1), the fbllowing conservation  equa-

tion of  the absolute  circulation  is obtained  (see
Appendix).

(dfdt) J, dx {v + (f!2)e × x} =  o. (2-2)

Here, C is a  material  closed  curve  on  the iso-0
surface.  The  adjective  

"material"
 means  that
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Fig. 1. The direetion of  integration is so

  defined that d4 =  dr × e  points in the
  direction outward-normal  to C, Here  e

  and  clx are  respectively  the unit  vector

  in the upward  vertieal  direction and  the

  horizontal projection of line element

  vector  on  C.

the closed  curve  C  moves  with  the fluid. Be-
cause  of the adiabatic  assumption,  C remains

on  the same  iso-e surface,  The horizontal pro-
jection of  the position vector  is denoted by x.

The direction of  dx, which  is the horizontal line
element  vector  on  C, is so  defined that dx  × e

points in the direction outward-normal  to C
(see Fig. 1).
  Together  with  the mass  conservation  equa-

tion, (2-2) is equivalent  to the  potential vor-

ticity (PV hereafter) conservation,  PV  is the
scalar  product of  the absolute  vorticity  and  Ve
divided by the density, In particular, the sign  of

the absolute  circulation  in (2-2) is the same  as

that ofPV.

2.b Initialdisturbance

  Let C' be another  material  closed  curve,

which  includes C  and  on  the same  iso-0 surface
as  C, We  consider  such  a  displacement (i.e.,
initial disturbance) of  the fiuid particles from C
to C', that  the  absolute  circulation  in (2-2) is
conserved  (see Fig, 2).

Ic dx ' {v + (f!2)e x x}

   =  J., dx' ' {vP + (fl2)e × x'}. (2-3)

Here, the velocity  of  the fluid particle on  C  is
denoted  by  v. The  velocity  vP,  which  the dis-

placed fluid particle has on  C', must  satisfy the
conservation  constraint  of  absolute  circulation.

According to the parcel method,  the pressure

gradient force is assumed  not  to be altered.

Then  the force exerted  on  the fiuid particle,
which  is displaced from C  to C', is
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/  
C'
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C

Fig,2. The solid  circles represent  the

  displaced fluid particle from C  to C',

  The  veloeity  of the fiuid particle on  C is

  denoted by u.  The velocity  uP  which  the

  displaced fluid particle has on  C' must

  satisfy  the conservation  constraint

  <2-3).

C'X,

uP c･

dt

Fig. 4. The anornalous  forceF(compared
  with the disturbance free case)  is the
  diflbrence between duP!dt and  du'fdt.

2,c Instabilily criterion

  Here, such  a vector  dg" is defined, that points
in the horizontal direction outward-normal  to
C' (see Fig. 1).

  dg' 
--

 dxf × e. (2-7)
Then, from Eqs. (2-6) and  (2-7),

tu

C

u

Fig. 3. The velocity  u',  whieh  the fluid

  particle has  on  C' in the absence  ofdis-

  placement,  is different from uP.

 dvPfdt=-VHO'-fexvP.  (2-4)
Here, O' =:  ¢ (x',t) and  x'  is on  C'. If the dis-

placement  (i,e., disturbance) is absent,  the fiuid

particles which  were  present on  C  and  C' re-
main  on  C  and  C', respectively  (see Fig, 3).
Then, the force exerted  on  the fluid particle,
which  lies originally  on  C' in the absence  of

disturbance, is

 dv7dt=-VHO'-fe × v'. (2-5)
Here, v'  =  v(x',  t) is the velocity  of  fluid particle
on  (]' in the absence  of  disturbance, Then the

anomalous  (compared with  the disturbance-free
case)  force F, felt by the displaced particle, is
the diffbrence between (2-4) and  (2-5) (see Fig,
4),

 F  =  {-VffO' -  fe × vP}  
-
 {-VHO' -  fe × v'}

   =fe × v'-fexvP.  (2-6)

Jc, dg' 
･
 F ..  fl,,(dx'

=flc,dx'

× e)･(e × v'-e × vP)

(vP -  vt)･ (2-8)

Here  the  identity (axb)･(cxd)=
(a･c)(b･d) 

-
 (a･d)(b･c) is used.  From  Eq, (2-

8), using  the conservation  condition  (2-3), the

fo11owing equation  is obtained,

1' d4･F--ft  dx'･{v'+(f!2)e× x'}

JC,  JC,

         +fI.dx  {v+(ff2)e× x}

       =  
-f1.,

 
.dx'{v+(f/2)e

× x}.  (2-g)

The integral on  the right  hand side  of  (2-9) is
the absolute  circulation  around  the region  be-
tween  C  and  C' (see Fig. 5), We  consider  such  a

displacement iij from C  to C' that its horizontal

projection 6u -  <e ･ ti")e is proportional to d4  If
the PV  is negative  between C  and  C', the abso-
lute circulation  is negative  there, and  so  the left
hand side of (2-9) is positive. The positiveness
means  that the scalar  product of  the displace-
ment  and  force is positive on  average,  and

therefore that the anomalous  kinetic energy  is

produced. That  is, the  disturbance grows. As a
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C,

Fig. 5. The difference between the circu-
  lations around  C' and  C is equal  to the

  circulation  around  the region  between
  C' and  C.

result,  Eq. (2-9) implies that the region  of  neg-

ative  PV  is uristable,

3. Generalcase

3.a Conservation ofabsolute  cireulation

  The nondissipative  equation  ofmotion  on  the
rotating  earth  can  be written  in the fo11owing
form  in the Cartesian coordinates  system,

  dVldt ==  
-evn-2gxV-vip.

 (3-1)
Here, V  is the wind  velocity,  e is the  potential
temperature, n  is the Exner function which  is a
function of  pressure, 9  is the angular  velocity

of  the earth,  which  is a  constant  vector,  and  ip is
the gravitational (plus centrifugal)  potential.
The material  temporal  difft)rential operator  is
denoted by dldt, and  the spatial partial differ-
ential  operator  is denoted by V.

  From  (3-1), the fbllowing conservation  equa-

tion of  the absolute  circulation  is obtained  (see
Appendix).

(d!dt) J, dJ( ･ (v +  g  x  x)  -  o. (3-2)

Here, C is a  material  closed  curve  on  the  iso-e
surface,  X  is the position vector  on  C, and  clJiC is
the line element  vector  on  C. The direction of

integration is clockwise  viewing in the direction
ofVO.

  Frorn (3-2), using  Stokes' theorem and

the mass  conservation  law, we  can  derive
the usual  conservation  equation  of  PV. In par-
ticular, the sigti of  the absolute  circulation

Jb (D(  ･ (V + 9  × X)  on  C is equal  to the sign  of

PV  there.

3.b Initialdisturbance

 As  is defined in section  3.a, C is a material

closed  curve  on  an  iso-e surface.  Here and

hereafter, let C  be so  small  that the direction of

Ve may  be regarded  to be uniform  on  and  inside
of  C. In addition  to C, another  closed  curve  C' is
defined, Let C' be such  a  material  closed  curve

on  the same  iso-e surface  that C  is included in-
side  of  C', at  tirne t, The  diference between C
and  C' is assumed  to be infinitesimal.

 At this time  t, the fluid particles from C  to C'
are  displaced, in such  a  way  that the conserva-

tion law (3-2) is satisfied,  That is,

icCtX･(V+n× x)

==  lc, cix'  
'
 (vp + g  × x'), (3-3)

Here, X' is the position vector  on  C', and  ctX'  is
the line element  vector  on  C'. The vector  VP  is
the velocity  that the fluid particle, which  is dis-

placed from X  on  C to X'  on  C', must  have in
order  to satisfy  the  conservation  constraint

(3-3). According to the parcel method,  the pres-
sure  gradient force is assumed  not  to be altered
in this infinitesimal displacement. Then, from
(3-1), the force exerted  on  the fluid particle dis-

placed from  X  on  C  to X' on  C' is

  dvPfdt=-0vn'-2nxVP-vip'.  (3-4)
Here, z' =  n(X',  t) and  ip' =  ip(X',t).
  If the displaeement (i.e,, disturbance) is ab-
sent,  the  fluid particle, which  was  present on  C'
remains  on  C', The fbrce exerted  on  this fluid

particle, which  is originally  present on  C', is

given by (3-1) at  X'.

  dV7dt=-evn'-29xV'-vip'.  (3-5)
Here, V' =  V(X',t). The  anomalous  force F  felt
by the fluid element  displaced from X  on  C  to
X' on  C' is the diffbrence between (3-4) and

(3-5),

  F  =  dVPfdt -  dV'!clt

   =-29.VP+29.Vi.  (3-6)
The anomalous  fbrce F  is the extra  force which
is caused  by the infinitesimal displacement, i,e.,
by the disturbance. If the extra  fbrce F  arn-

plifies the displacement, then  the disturbance
grows, and  then  the flow is unstable.

3.e Instability criterion

 As is defined in section  3,b, C' is a  material

closed  curve  on  an  ise-e surface.  On  and  inside

of  C', the direction of  VO may  be regarded  as
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unifbrm.  Let n  be the unit  vector  parallel to VO.
Since the line elernent  vector  dX'  on  C' lies on

the iso-e surface,  the vectors  n  and  dX' are

perpendicular to each  other.

  Here, a  vector  element  d4 is defined, which  is
the veetor  product ofn  and  clX'.

  deg==ctX'xn, n/xVO  and  lni=1, (3-7)

Since n  and  dX' are  perpendicular to each

other,  the length of  dg" is the line element  of

C', i.e., ldCl =  dX',  and  the direction of  dg' is
outward-normal  to C'.
  Let us  consider  the fo1}owing line integral of
the extra  force (3-6) on  C',

[ dg' F=t  dg" (29× V'-2st × VP). (3-8)
,rC, JC,

After substitution  of  (3-7), and  some  manipu-

lations, the Eq. (3-8) becomes

J,, dc 
･F
 -  2(g n)  i., dx' 

･
 (vp - vf)

   
-
 2 l,,(ctXf 

･
 9) {n ･ (vP -  v')}.(3-9)

If the basic flow is stationary,  i.e,, c'//nt ==  O,

the  fiow velocity  is perpendicular to VO, because
of  the adiabatic  assumption.  This means  that
n･V'  in (3-9) vanishes,  since  n  cx VO. The ve-

locity of  the displaced fluid part]icle is forced
to change  from V to VP, in order  to satisfy  the
conservation  constraint  (3-3), Since the conser-

vation  constraint  (3-3) says  nothing  about  the

vector  component  parallel to Ve, the component
of  VP  parallel to Ve  is the same  as  that of  V,
which  is zero  because ofthe  adiabatic  assump-

tion. Further eliminating  VP  from C3-3) and

(3-9), we  obtain  the following equation.

Ic,d4'F
=  

rm2(st
 n)  Ic,-caix 

･
 (v+2g xx).(3-10)

The integral in (3-10) is the absolute  circulation

around  the region  between C' and  C. So, the
sign  of  the integral is equal  to the sign  ofPV

there,

 We  consider  such  a  displacement tiij from C
to C' that is proportional to d4. If the sign  of

(st ･Ve)PV  is negative,  the sign  of  k,,dg' 
･F

 is

positive, The positiveness of  J'c,d4-F means

that the scalar  product of  the displacement and
force is positive on  average,  and  therefore that

the kinetic energy  is produced compared  with

the disturbance-free case.  That is, the distur-
bance grows, As a result, (9-Ve)PV <O  im-

plies instability.

4. Conclusion

  As  is well  known,  when  a  basic flow with

linear or  axial  symmetry  has a  region  of  nega-

tive potential vorticity  (PV hereafter), such  a

disturbance with  the same  symmetry  as  the

basic flow grows  that converts  the negative  PV
into non-negative  PV, This is the so-called

symmetrie  instability,

  The proof of  conventional  symmetric  insta-
bility is crucially  dependent on  the symmetry  of

basic fiow, That is, the conventional  proof says

nothing  about  the instability of  an  asymmetric

basic flow with  negative  PV. In the real  atmo-

sphere,  a  region  of  regative  PV  seems  to be un-

stable,  seems  not  to persist, Indeed, PV  is posi-
tive (in the nothern  hemisphere) in most  parts
of  the atmosphere,

  In this note,  the fo11owing was  shown  in
a  nondissipative  adiabatic  system.  Irrespective
of  the symmetry,  disturbances grow  in the re-

gion of  negative  PV. That is, irrespective of the
symmetry,  a  flow with  negative  PV  is unstable,
More  precisely speaking,  the negativeness  of

PV  means  that the sign  ofPV  is opposite  to the

sign  of9  ･ VO. Here, 9  is the  angular  velocity  of

the earth,  and  e is the potential temperature.

  In the hydrostatic case  on  a  f-plane, as-

suming  that the vertical  gradient of  0 is every-

where  positive, and  taking e as  the vertical

coordinate,  we  could  show  that  the  basic flow

Cnot necessarily  steady)  with  negative  PV  be-
comes  unstable,  In the general case  (i,e,, non-

hydrostatic and  on  the  rotating  sphere),  we

could  show  the instability only  of  the steady

basic flow with  negative  PV.

  The proof is based on  the conservation  law
of  absolute  circulation  on  the iso-e surface.

Together  with the mass  conservation,  the law
is of  course  equivalent  to the conservation  law
ofPV,

  The  instability was  shown  by employing  the

parcel method.  A  particular initial disturbance
is assumed  by the parcel method,  However, the

particularity  has no  problem, because the exis-
tence of at least one  growing  disturbance is
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suMcient  for the instability. The parcel method
can  say  nothing  about  the  form  of  disturbance,
or  about  its growth  rate.  These are  left fbr fu-
ture works.

              Appendix

  Let C be a  material  closed  curve  on  an  iso-O
surface.  Because  of  the adiabatic  assumption,

the future C  at  time t >  O remains  to lie on  the
same  iso-e surface  as  the initial C(O) at  time
t=o.

  Let us  consider  the material  temporal  deriv-
ative  of  the absolute  circulation  around  the re-

gion encircled  by a.

(dfdt) J, dx  ' (v + st × x). (A-1)

Here  X  is the position vector  on  C, clX  is the
line element  vector  on  C, V  is the wind  velocity,

and  9  is the angular  velocity  of  the earth.  The
direction of  integration is clockwise  viewing in
the direction of  VO, The integral (A-1) on  C  at

timetcan  be rewritten  as  an  integral on  C(O)
at  time t =  O, and  then  the differentiation with
respect  to tcan  be perfbrmed  inside of  the inte-

gral symbol.

(didt) 1, dx  ･ (v + g  × x)

    -  (dldt) f (tX(O) ･ {V(O)X} ･ (V +n  × X)
          JC(O}

    -1  dxco)-{vco)v}-(v+ft.x)
     JC(O)

     +  f clX(O) , {V(O}X} ･ (dV!dt +  st × V)
       Jc(o)

    =J.dv  (v+gxx)

     +  lc dx  ' (dv!dt +g  x  v)

    =Jcdv･g × x

     +k         dX7･(dV!dt+9xV).  (A-2)
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Here  XCO) is the initial position vector  on  C(O)
corresponding  to X  on  C, clX(O)  is the initial line
element  vector  on  C(O) corresponding  to ctX  on

C, and  V(O) =  OfaX(O} is the partial differential
operator  with respect  to the initial position.
Further, partially integrating, substituting

(3-1) into (A-2), and  noticing  that e is constant
on  C, we  obtain  the fo11owing conservation

equation,

(dfdt) i, (IX  (V + st × x) =  o. (A-3)

In the hydrostatic system,  almost  the same

result  is obtained,  except  that cl)Sl, V  and  X  in

(A-3) are  replaced  with their horizontal pro-
jections, and  that 9  is replaced  with  Cf12)e.
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