[170] 鋼定着部のコンクリート支圧強度

遠山幸三 (鹿島建設技術研究所) 正会員 〇鈴木宏一 (鹿島建設技術研究所) 中村嘉宏 (鹿島建設建築設計本部) 山田俊一 (鹿島建設建築設計本部)

1. はじめに

新耐震設計法の施行に伴い、二次設計時における保 有耐力の算定が規定されるようになった。このような 意味から、接合部の終局耐力を評価することは重要な 課題となっている。

鋼構造の露出型柱脚は、S造の上部骨組とRC造の 基礎とを結ぶ接合部であり、その構成を図-1に掲げ る。図に示すように、鉄骨柱の下部にベースプレート が溶接接合され、そのベースプレートはアンカーボル トにより基礎コンクリートに結合されている。柱脚部 は鉄骨柱より軸力と曲げを受けており、ベースプレー トの曲げ、アンカーボルトの軸力と基礎コンクリート の支圧により抵抗している。その終局耐力に影響する 要因として、次の6点が挙げられる。

- (a) 鉄骨柱とベースプレートの接合部の耐力
- (b) ベースプレートの曲げ耐力
- (c) ベースプレートの曲げ剛性
- (d) アンカーボルトの引抜耐力
- (e) アンカーボルトの引抜剛性
- (f) モルタル・基礎コンクリートの支圧耐力

図-1 鋼構造露出型柱脚の構成

今回は、剛性及び耐力の高いベースプレートとアンカーボルトで構成されている柱脚を対象に、(f)の モルタル・基礎コンクリートの支圧耐力に注目し、圧縮試験を行なったので、その概要を報告する。

基礎コンクリートの形状は諸々の条件からローソク状の立上りとなる場合があり、このような場合でも 基礎コンクリートは十分耐力を保持する必要がある。しかしながら、へりあきなど、柱脚に対する基礎コ ンクリートの形状が終局耐力にどのような影響を与えるか、未解決である。特にへりあきが小さい場合、 強い曲げを受けたときにベース下モルタル・基礎コンクリートが圧縮すべり破壊¹⁾を起こし、アンカーボ ルトやベースプレートが十分耐力を発揮できなくなる場合が考えられる。また、支圧反力の作用している 面積(支圧面積)の大小による影響も不明である。

そこで実験では、基礎コンクリートのへりあき量およびベース下の支圧面積をパラメーターにとり、基礎コンクリートの耐力を調べることにより、露出型柱脚の終局耐力評価に対し有効なデータを与えること を目的とする。

次に本実験の具体的な確認事項をあげる。

- (a) 基礎コンクリートの破壊モード
- (b) へりあき量と支圧面積が基礎コンクリートの支圧耐力に与える影響

2. 実験方法

(1) 試験体

図-1に示してある部分を想定し、試験体を製作した。このとき、へりあき量eと加圧幅Bの2点を実 験パラメーターとおいている。

試験体一覧を表-1、形状を図-2に掲げる。試験体はへりあき量eを 2.5cm, 5cm, 7.5cm, 10cmの

4 ケース、それぞれに対し加圧幅Bを 3 cm, 6 cm, 11 cmと変化させ、計1 2種の載荷試験を行なった。試験 体名は中の数値がへりあき量、右の数値が加圧幅を示 している。試験体の形状決定には現実の 200×200 の 箱形断面柱の柱脚を想定しており、コンクリートのせ ん断破壊に影響を与えないよう十分な高さをとってい る。また現実の基礎コンクリートには配筋が施されて いる為、今回の試験体でも現実に近い配筋を施してい る。なお材料はコンクリートがFC210、モルタル が無収縮モルタル、鉄筋がSD30である。コンクリ ートとモルタルの調合表および材料強度試験結果を表 -2,3に掲げる。

(2)加力方法

加力は図-3に示すように、万能2000トン大型構造 物試験機を用い、圧縮試験用クロスヘッドに、図に示 す加圧治具を取りつけて行なった。加圧治具と試験体 との間に所定の加圧面が得られるように加圧プレート をはさんでいる。載荷は単調載荷であり、試験体が破 壊するまで加力した。

3.実験結果と考察

(1) 基礎コンクリートの破壊モード

すべての試験体とも、荷重を増加させるに従い加圧 プレートに直交する方向に縦クラックが走り、破壊荷 重に達すると急激に耐力が落ちるという経過をたどっ た。

破壊モードは図ー4に示すように、大別して2種類 に分けられた。

Sタイプ……かぶりコンクリートの上部が外側へ はらみ出すような圧縮すべり破壊

Kタイプ……コンクリートに縦クラックが入る割 裂

破壊モードの差は、加圧面中心までのへりあき量と 加圧幅の比(B/2+e)/Bに関係があると考えら れる。表ー4には(B/2+e)/Bと破壊モードの 種別を掲げてある。表より、ほぼ次の関係を導くこと ができる。

(B/2+e)/B<1……Sタイプ

(B/2+e)/B>1……Kタイプ

以上より、破壊線の方向と加圧面中心までのへりあ き量および加圧幅の比は密接な関係があることがわか る。¹⁾

また、同じKタイプでも加圧面中心までのへりあき 量の差により、その破壊モードに差があらわれた。図 -5にその例を3例掲げる。本図は、各試験体のクラ ック発生状況を示したものである。(a)図より(c)図

表 - 1 i	式 験	体	一覧		
試驗体名	10	加圧幅			
	e(mm) e(mm)		B()		
A- 2- 3		50	30		
A- 2- 6	25	75	60		
A- 2-11		100	110		
A- 5- 3			30		
A- 5- 6	50	50	60		
A- 5-11			110		
A- 7- 3	1	1	30		
A- 7- 6	75	75	60		
A- 7-11			110		
A-10- 3		1	30		
A-10- 6	100	100	60		
A-10-11			110		

表-2 コンクリートとモルタルの調合表

	C:S	w∕c	看日村半	スランプ	混和材*	備考
		x	×	a	Kg/ 1	
コンクリート	1:3.1	64.5	47.4	18.0	2.89	—
モルタル	1:1	36.0	-	-	—	タスコン
± 381		- 14 + 24			•	

表-3 コンクリートとモルタルの材料試験 *

	圧縮強度	割裂強度	試験方	法	
	Kg/ cali	Kg/ai	シリンダー形状	試験体数	
ンクリート	250	35.0	10 <i>4</i> ×20cm	314	
ルタル	509	_	5¢×10cm	614	
				• • • • • • • • • • • • • • • • • • • •	

* 気乾養生,材齢4週

表-4 破壊モード

試験体名	B/2+e (<i>с</i> ля)	<u>B/2+e</u> B	破壊モード
A- 2- 3	4.0	1.33	モルタルの剥離
A- 2- 6	5.5	0.92	S
A- 2-11	8.0	0.73	s
A- 5- 3	6.5	2.17	k
A- 5- 6	8.0	1.33	k
A- 5-11	10.5	0.95	S
A- 7- 3	9.0	3.00	k
A- 7- 6	10.0	1.75	ĸ
A- 7-11	13.0	1. 18	k
A-10- 3	11.5	3.83	k
A-10- 6	13.0	2.17	k
A-10-11	15.5	1.41	k

図-5 破壊時のクラック発生状況

- !	5	最	大	耐	力	٢	そ	Ø	評	偭
-----	---	---	---	---	---	---	---	---	---	---

	最大耐力	最大応力度		支承面積比	許容支圧応力度		(38+2e) ²	(<u>38+2e)</u> ²
	Po(t)	σο(Kg/aii)	σο/σο	√ 717A0	fn(Kg∕cai)	<i>σ</i> 0/fn	√ <u>38×</u> B	00/00 38×B
A- 2- 3	56.0	491	1.96	1.84	207	2.37	4.03	0.486
A- 2- 6	85.6	375	1.50	1.60	180	2.08	2.85	0.526
A- 2-11	101.8	244	0.976	1.49	167	1.46	2.10	0.467
A- 5- 3	60.0	526	2.10	2.34	263	2.00	4.50	0.467
A- 5- 6	82.0	360	1.44	1.84	207	1.74	3. 18	0.453
A- 5-11	124.5	298	1. 19	1.55	175	1.70	2.35	0.506
A- 7- 3	70.0	614	2.46	2.89	325	1.89	4.96	0. 496
A- 7- 6	100.0	439	1.76	2.21	249	1.76	3.51	0.501
A- 7-11	132.8	318	1.27	1.82	205	1.55	2.59	0.490
A-10- 3	80.0	702	2.81	3.42	385	1.82	5.43	0.517
A-10- 6	110.0	482	1.93	2.57	289	1.67	3.84	0.503
A-10-11	144.8	346	1.38	2.07	233	1.48	2.84	0. 486

にいくに従い、へりあき量が大きくなっている。

表

B / 2 + e < 13 cm ····· 主筋にそってクラックが入 り、かぶりコンクリートが 外側に折れ曲がるように破 壊 (図 (a),(b)) B / 2 + e ≧ 13 cm ····· クラックが内側に向って入 り、クラックが無数に入っ て破壊 (図 (c))

上記の理由として鉄筋の影響が考えられ、B/2+ eが大きくなるとフープ筋が有効に働き、割裂を防止 するためと考えられる。

(2) 支圧耐力

表-5に各試験結果一覧を掲げる。図-6に、へり あき量eと各試験体のコンクリート強度に対する最大 応力度の比σ0 /σc の関係を示す。図より、同じへ りあき量では加圧幅が小さくなるほど最大応力度が上 昇し、また、同じ加圧幅ではへりあき量が大きくなる ほど最大応力度が上昇する傾向が現れた。結果より、 2.5cm ≦ e ≦ 10cm では 1 ≦ σ0 /σc < 3 であった。 次にプレストレストコンクリート規準²⁾の許容支圧

応力度との対比を行なう。表-5に支承面積比(√支 承面積A1/支圧面積A0)を掲げている。このとき A1は表右の図に示したように、支圧面周りにへりあ き量 e だけの支承面が広がっているものと仮定し、算 出している。図-7に支承面積比との0/のCの関係 を示す。図より、支承面積比が上昇するに従い最大応 力度が上昇する傾向が現れた。また、許容支圧応力度 の算定式であるfn=0.45 σc √A1/A0 にはほ とんどの実験結果が上回っており、ほぼ1.8倍程度 の値が出ていた。

実際の柱脚部基礎コンクリートの支圧耐力の算定式 としては、柱脚部の形状を考慮に入れた支圧耐力式が A.I.S.C.のL.R.F.D.指針³⁾に提案されている。算定式 を下に示す。

fn = 0.35 σc √A1′/A0′≤ 0.7σc …(1) A1′:基礎コンクリート断面積

Ao':ベースプレート面積

(1)式をもとに、A1'を基礎コンクリート断面積、 A0'を支圧面積と考え、σ0 とσc √A1'/A0'の比 をプロットすると図-8の結果が得られる。本実験の 範囲では 0.45 から 0.55 の間にあり、平均値は0.49 であった。 この結果を用いてBとeの関係式を求め ると、次式となる。

(2) 式より求めた実験値の近似直線を図-6に記入 する。

4.まとめ

(1) 破壊 モードの 差……加圧面中心までのへりあ

(2) 実験式の導出……へりあき量eが大きいほど、加圧幅Bの小さなものほど最大応力度 σ_0 は大きくなった。また、その値はeが 2.5 cmより10 cmまでの値では 1 ≦ $\sigma_0 / \sigma_c < 3$ であった。なお実験式として、 $\frac{\sigma_0}{\sigma_c} = \frac{0.16 \ e + \ 3.0}{\sqrt{D}} \sqrt{\frac{D}{B}}$ が得られた。

(3) PS規準との対比……最大応力度の0は許容支圧応力度のほぼ1.8倍の値となった。

(謝 辞) 本実験に際し、御指導いただきました東京大学工学部建築学科 加藤勉教授に感謝いた します。また、本研究は日立金属㈱との共同研究として行ったものであります。

(参考文献) 1)河村、浜田:「局部的に大きな応力を受けるコンクリートの応力と破壊について -----その1(弾性応力解析による圧縮接合の耐力推定)」

日本建築学会九州支部研、昭和58年3月

- 2)「プレストレストコンクリート設計施工規準・同解説」 日本建築学会、1975年
- 3) [Proposed Load and Resistance Factor Design Specification for Structural
 - Steel Buildings] A.I.S.C , April 15, 1983