報告 高流動コンクリートを用いた MMST 中詰めコンクリートの施工

青柳 隆浩*1・土谷 義勝*2・坂田 昇*3・柳井 修司*4

要旨:新しい大断面トンネル構築工法 (MMST工法) における施工において、シールド 鋼殻内の狭隘かつ閉鎖された空間にコンクリートを密実に充てんすることが要求された。 そこで、高流動コンクリートの適用を検討し、要素実験による配合検討とモデル実験を行い、実施工に臨んだ。実施工においては、充てん性の判定と打止め管理が課題となったが、 充てん検知センサーと圧力計の使用により、適切な充てん管理が行えた。

キーワード: MMST工法, 高流動コンクリート, 閉鎖空間, 施工

1. はじめに

首都高速道路公団によるMMST (マルチ・マイクロ・シールド・トンネル) 工法¹⁾ の試験 工事が高速川崎縦貫線の(仮) 大師ジャンクションにおいて実施された。

MMST工法とは、複数の小断面矩形シールド機で大断面トンネルとなる外殻部を先行構築したのち、トンネル鋼殻内部の充てんコンクリートを打込み、外殻躯体内部の土砂の掘削・内部構築を行うことで非開削大断面トンネルを構築する新工法である。この工法においては、大断面トンネルを構築するため、外殻となる矩形小断面トンネルの内部をコンクリートにより密実に中詰めすることが要求された。

ここでは、MMST外殻部の構築に際し、狭 隘かつ閉鎖空間に打込むコンクリートの仕様と 施工法を確立するために実施した要素実験及び その実施工の概要について報告する。

2. MMST工法の概要

新しい非開削大断面構築工法であるMMST 工法の施工手順は以下のとおりである。

① トンネル外殻部となる小断面シールドトンネル(鋼製セグメントで構成)を、小断面矩

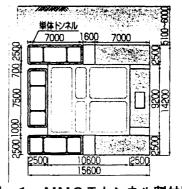


図-1 MMSTトンネル割付図

形シールド機で掘削する。

- ② 小断面トンネル間の地山を掘削し,接続部材として鉄筋などを配置する。
- ③ 鋼製セグメントと接続部内部にコンクリートを打込み、外殻部躯体を構築する。
- ④ 外殻躯体内部の土砂を掘削し,内部構築を行い、大断面トンネルを完成させる。

図―1に6本のMMSTトンネルの割付図を示す。外殻構築工は、6本の単体トンネル間を接続した矩形断面をコンクリートで中詰めして構築することになる。

3. 鋼殼中詰めコンクリートエの検討

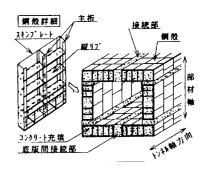
MMST工法によるトンネル躯体は、**図-2** に示すように鉄筋のかわりに小断面トンネル時

- *1 鹿島建設(株) 土木設計本部 第三設計部 設計主査 工修(正会員)
- * 2 首都高速道路公団 湾岸線建設局 大師工事事務所長
- *3 鹿島技術研究所 土木技術研究部 材料・施工グループ 主任研究員 工博(正会員)
- *4 鹿島技術研究所 土木技術研究部 材料・施工グループ 研究員 工修(正会員)

の鋼製セグメントを引張補強材とする鋼・コン クリートサンドイッチ部材と、このサンドイッ チ部材同士を接続するRC部材から構成される。

図―3に今回の施工における中詰めコンクリートの検討の流れを示す。部材実験あるいは設計面の要求性能から、中詰めコンクリートを密実に充てんする必要がある。坑内閉鎖空間ではコンクリートの締固めが不可能であることから、高い自己充てん性を有する高流動コンクリートが必要であると考えられた。

中詰めコンクリートの検討は、閉鎖空間での 施工性・充てん性能の確認とコンクリートの配 合仕様の両面から実施した。


4. モデル実験

4. 1 充てん性評価試験(要素ボックス試験)

本工事では、鋼殻の内部コンクリートの打込みに際し、①鋼殻内部の形状が複雑であること、②鋼殻内に鉄筋やPC鋼材が複雑に配置されること、③鋼殻で囲まれた閉鎖空間での施工となること、から高流動コンクリートの中でも優れた自己充てん性が要求された。そこで、内部充てんコンクリートに適した配合を選定するために鋼殻頂部の主桁および縦リブを模した充てん性評価試験装置(以下、要素ボックス試験と記す)を考案して室内配合試験を実施した2)。

試験に供したコンクリートの使用材料を表-1に示す。セメントには高い流動性が容易に得られる低熱ポルトランドセメントを使用した。また、高流動コンクリートのうち、自己充てん性の向上および流動性のばらつきを抑制する特殊増粘剤ウェランガムを使用した併用系高流動コンクリートについて検討を行った。試験は、粉体量が自己充てん性に及ぼす影響に着目し、粉体量を 470~666kg/m³ の間で5 水準に変化させて実施した。

要素ボックス試験の形状は**図-4**に示すものであり、投入口からコンクリートをゆっくりと投入して、振動締固めを行わない状態の充てん高さ(測定点A~F)を測定し、自己充てん性

図ー2 トンネル躯体及び鋼殻構造の概要

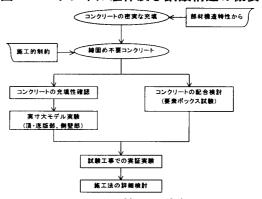
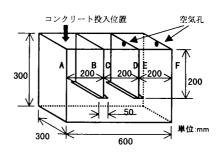



図-3 検討の流れ

表-1 コンクリートの使用材料

使用材料	記号	摘要						
セメント	O	低熱ポルトランドセメント	密度3.22g/cm³, 比表面積3,500cm²/g C ₃ A=3%, C ₂ S=54%					
混和材	ľ	石灰石微粉末	密度2.71g/cm ³ , 比表面積4,080cm ² /g					
細骨材	S	君津産山砂	表乾密度2.60kg/ℓ, 吸水率1.62% 粗粒率2.67					
粗骨材	G	八戸産石灰砕石(2005)	表乾密度2.70kg/l, 吸水率0.78% 実積率60.8%,粗粒率6.68					
混和剤	SP	高性能AE減水剤	ポリカルポン酸系					
北北川門	VIS	特殊增粘剤	ウエランガム					

図ー4 要素ボックス試験装置

を定量的に評価した。

表-2に試験結果を示す。要素ボックス試験の 両端A-F高低差は粉体量が顕著な影響を及ぼ し、粉体量が多くなるほど自己充てん性が向上 した。このことから、より高い充填性を得るた めには、両端A-F高低差を 20mm 以下とし、実 粉体量を 600~666kg/m³程度とすることが必要 であると考えた。

4. 2 実寸大モデル実験

施工に先だって、実構造物の一部を模擬した実 寸大モデル実験を実施した。

(a) 底版部および頂版部

底版部および頂版部におけるコンクリートの施工においては、鋼殻と型枠とによって閉塞された複雑なリブ構造であり、かつ、バイブレーターによる振動締固め作業が行えない。また、閉鎖空間であるために、鋼殻内天端のエアー抜きが困難となる。そこで、主として以下の項目について確認を行い、実施工に反映した。

- ・要素ボックス試験で選定した高流動コンク リートの自己充てん性
- ・エアー抜き構造(管の位置,形状,本数) 図-5に底版部と頂版部のモデル実験の概要 と結果を示す。

実験の結果,底版部および頂版部のコンクリートの施工においては,自己充てん性に優れた高流動コンクリートを使用し,エアー抜き管を適切に配置することで,複雑なリブ構造内にコンクリートを密実に打ち込め,鋼殻とコンクリートの一体性が確保できることを確認した。

(b) 側壁部

底版部, 頂版部と異なり, 側壁部は上方の空間を利用してバイブレーターによる振動締固めを行うことが可能である。しかしながら, 鋼殻の縦リブ下部にコンクリートが十分に廻り込まず, 未充てん部が生じることが懸念された。そこで, 以下の項目について確認を行い, 実施工に反映することとした。

- コンクリートの流動性 (スランプ 12cm および 18cm)
- ・ 鋼殻内部の鉄筋の有無
- ・ 縦リブの形状の相違

図-6に側壁部モデル実験の概要と結果を示す。実験の結果、縦リブの形状を適切に加工し、スランプ 18cm 程度のコンクリートを密実に締め固めることで鋼殻とコンクリートの一体性を確保できることを確認した。

表-2 配合試験の結果

No	粉体量 (kg/m³)			要素ポックス試験 A-F 高低差(mm)
1	470	570 × 570	5. 8	215
2	500	695 × 685	6. 0	64
3	550	690 × 690	3. 8	44
4	600	710 × 710	4. 7	15
5	666	720 × 720	4. 6	5

表-3 高流動コンクリートの配合

fck	スラグ	水炒	变	粉体	単位置						
(28⊞)	70-	比	물	뭁	(kg/m³)						
(N/mm²)	(mm)	(%)	(%)	(kg/m ³)	W	С	LP	S	G	B	VIS
35	700	45		666	172	383	283	675	810	11.32	0.172
PC部	650		45	605	161	358	247	681	891	8.47	0.161
24	700	55	4.5	648	172	313	335	681	810	10.37	0.172
RC部	650			605	160	291	314	673	891	7.87	0.160

5. コンクリートの実施工

外殻構築工は、モデル実験の結果を反映し、図一7に示す断面割付けでコンクリート仕様を計画した。コンクリートの設計基準強度についてはプレストレストコンクリート部材は 24N/mm² で鉄筋コンクリート部材は 24N/mm²である。また、コンクリートの流動性については振動締固めが行えない頂版と底版部は高流動コンクリート、側壁部はスランプ 18cm とした。なお、高流動コンクリートについては、打込み部の天井が鋼殻となる部位についてはスランプフロー700mm、その他の部位についてはスランプフロー650mm のものとして、合理的な施工を目指した。高流動コンクリートの配合を表ー3に示す。

実施工においては、実寸大モデル実験の結果 を受け、以下の課題を再検証した。

- ①鋼殻内天端のエアー抜き構造
- ②打止め管理手法
- ③充てん性確認手法

5. 1 底版一頂版間の施工概要

まず、最も充てん性が厳しい頂版及び底版間 接続部の施工について報告する。

頂版間接続部は**, 図―7**に示すようにRC構造による接続構造となっている。打込み高さは**, 鋼**殻全高の 2.5 mである。

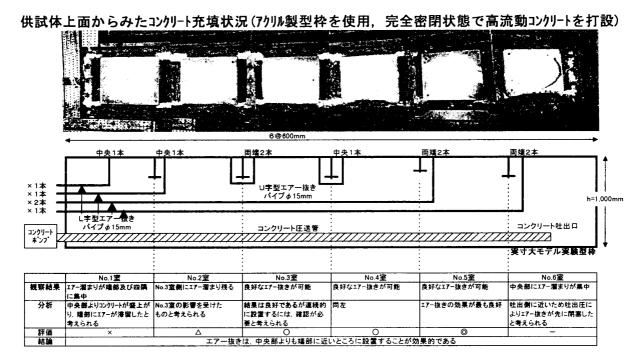
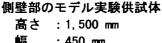
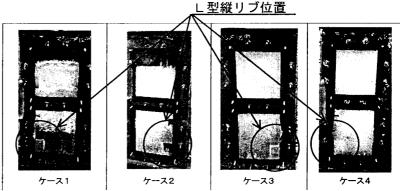
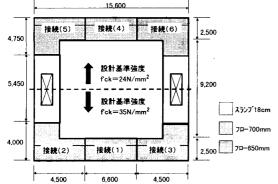




図-5 底版部(頂版部)の実寸大モデル実験


幅 : 450 mm 奥行 : 650 mm

写真は側面からみたコンク リートの充填状況 (アクリル製型枠を使用, パイプレーターによる締固め)

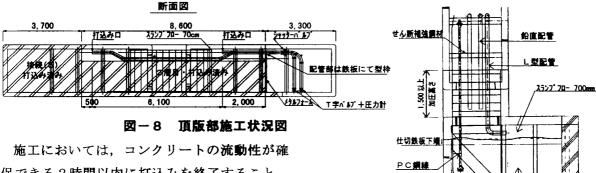

	縦 リブ 内 へ のコンクリートの 充 て ん 状 況							
ケースNo.	1	2	3	4				
スランプ	12cm	12cm	18cm	18cm				
鉄 筋	なし	あり	なし	あり				
上段	0	0	0	0				
(上向き縦リブ)	良 好	良 好	良 好	良好				
中断	×	×	0	Δ				
(下向き縦リブ切欠きなし)	未充てん	未充てん		一部未充てん				
下段	Δ	×	0	0				
(下向き縦リブ切欠きあり)	一部未充てん	未充てん	良好	良好				

図-6 側壁部の実寸大モデル実験

打設部位名称	部位	構造形式
外殻トンネル部	小断面トンネル内部	鋼・コンクリートサント・イッチ構造
接続(1)	底版トンネル間接続	プレストレストコンクリート構造(PC 部材)
接続(2)(3)	底版・側壁間トンネル接続	プレストレストコンクリート構造(PC 部材)
接続(4)	頂版間トンネル接続	鉄筋コンケリート構造(RC 部材)
接続(5)(6)	頂版・側壁間トンネル接続	鉄筋コンクリート構造(RC 部材)

図ー7 コンクリートの断面割付

保できる2時間以内に打込みを終了すること, 鋼殻桁下へのコンクリートの廻込みを考慮して, 高さ方向には1層目1.8 m, 2層目0.7 mとし た。また、頂版部の施工に際しては、底版部で の施工実績を反映し、施工効率を挙げるため、 ロット(トンネル縦断方向の約10mの区間)ご との境に仕切鉄板を設置し, 各ロット毎に充て んを確認したのち, 次ロットへ切り替えていく 連続打設を採用した。エアー抜き構造について は、鋼殻内天端のエアーの滞留を考慮し、鋼殻 に設けられた切欠きを利用しながら、トンネル 軸方向には主桁を跨ぐようにU字型SGP(ø 20mm)を取り付け、横断方向には2リング(1リ ング@1.2m) に1箇所ずつ横引きL字型SGP (φ 20mm)を設置した。**写真—1**にエアー抜き管 の設置状況を示す。

配管は5インチ管を使用し、圧送距離、トンネル軸方向縦断勾配(3%)、コンクリートの平面的流れを考慮して設置した。鋼殻内の型枠及び配管設置状況を図-8および写真-2に示す。 5.2 底版-側壁(頂版-側壁)間の打設概要

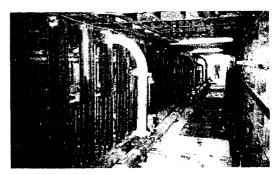
次にMMST外殻の隅角部となる底版ー側壁間の施工について報告する。底版ー側壁間接続部は、底版部接続部と同様にPC鋼線による接続構造となっており、幅 4.5 mの接続部間を構築するものである。底版ー側壁間接続部における施工課題は、底版鋼殻天端への確実な充てんを行うことであった。そこで、側壁内の上部空間を利用し、打上げ高さによるヘッドによって、底版上部へのコンクリートの充てんを試みた。底版での実績から 0.035N/mm²以上の圧力を目安とし、加圧充てん高さ 1.5 m以上と設定した。図—9に施工状況図を示す。

図-9 底版-側壁間の施工状況図

写真一1 エアー抜き管設置状況

6. 打設および施工管理

コンクリート打込みは、写真-2に示すよう に側型枠を有する閉鎖空間内への充てんであり, 充てん性の判断と打止め管理が大きな課題であ った。なお、充てん性の判定とコンクリートの 流動状況は、鋼殻天端に設置した光学式センサ ーでの判断とした。光学式センサーの概略図を 図-10に示す。このセンサーは、両端子間に光 が透過する構造となっており、この部分がコン クリートによって遮断されると、モニターの信 号が点灯して、充てんを検知するものである。 コンクリートはトンネル縦断勾配を利用して, 勾配の低い側から高い側にエアーを逃がすよう に、最下流側の配管から打込んだ。その後セン サーの反応状況を確認しながら, 打設配管を切 り替えた。最終打止めは、型枠付近の配管に設 置した圧力計の読み(最大 0.4N/mm²) とセンサ ーの反応状況およびエアー抜き管からのモルタ ル分溢出、型枠面のたたき、打設数量から判断 し、鋼殻天端まで十分充てんされたことを確認 して終了した。


6. 1 コンクリートの品質管理

コンクリートの品質管理は, 生コン工場およ び現場にてそれぞれ行った。コンクリートの製 造時には、練混ぜ時のミキサの負荷値を測定し、 その結果を基にしてコンクリート中の水分が適 正な値になるように、水分量を適宜調節した。 打設現場の受入れ時のコンクリートの品質管理 は、打設開始から5台目までのアジテータ車に ついては全車、その後は5車に1台の頻度でフ レッシュ性状試験を実施し、圧縮強度試験用供 試体を採取した。フレッシュ性状試験としては, スランプフロー, 500mm フロー到達時間および 空気量を測定した。表一4に高流動コンクリー トの受入れ時の品質管理試験結果をまとめて示 す。表に示すように、施工に供した高流動コン クリートはフレッシュ性状、硬化性状とも極め て品質が安定しており、また、全ての試験値が 管理値を満足していた。このように、高流動コ ンクリートの性状が安定した理由としては, コ ンクリート製造時に水分管理を厳密に行い、か つ特殊増粘剤ウェランガムを用いた併用系高流 動コンクリートを用いたことによるものと考え られる。

7. まとめ

トンネル閉鎖空間内の中詰めコンクリートに 高流動コンクリートを適用し、要素実験、実施 工を行った結果、以下の知見が得られた。

- (1) 自己充てん性を評価する手法として要素ボックス試験装置を考案し、粉体量に着目した実験を行った。その結果、併用系高流動コンクリートを用いて、粉体量を 600kg/m³~660kg/m³程度とすることが有効である。
- (2) モデル実験および実施工において、空気の 流れを考慮したエアー抜き管を適切に配置し、 コンクリートの流動性状を考慮した配管計画 により、コンクリートの密実な充てんが可能 となった。
- (3) 配管に設置した圧力計,天端に設置した光 学式センサー,打設数量,型枠面のたたきに

写真一2 坑内配管状況

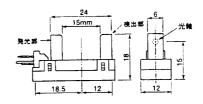


図-10 光学式センサー 表-4 品質管理試験結果

		スランプフロー	500mm7¤	空気量	圧縮強度
		(mm)	(秒)	(%)	(N/mm^2)
	最大値	742.5	7.0	4.9	45.4
fck;	最小値	652.5	4.0	3.1	41.9
$35N/mm^2$	平均値	704.6	5.8	4.1	43.7
スランプフロー;	標準偏差	17.86	0.62	0.49	1.22
700mm	変動係数(%)	2.53	10.7	11.85	2.80
	度数	102	70	16	48
	最大値	700.0	8.0	4.8	44.5
fck;	最小値	600.0	4.9	4.0	41.6
35N/mm ²	平均値	654.9	6.2	4.4	43.4
スランプフロー;	標準偏差	22.70	0.75	0.28	0.91
650mm	変動係数(%)	3.47	12.0	6.45	2.09
	度数	70	70	11	33
	最大値	735.0	6.1	4.5	34.9
fck;	最小値	675.0	4.0	4.0	30.2
24N/mm ²	平均値	701.9	5.0	4.3	32.6
スランプフロー;	標準偏差	15.66	0.40	0.21	1.45
700mm	変動係数(%)	2.31	7.96	4.93	4.45
	度数	64	64	8	24
	最大値	690.0	7.2	4.5	32.7
fck; 24N/mm² スランプフロー; 650mm	最小値	600.0	4.5	3.6	29.2
	平均値	652.4	5.5	4.0	31.3
	標準偏差	18.15	0.70	0.31	0.96
	変動係数(%)	2.78	12.8	7.78	3.08
	度数	96	96	15	45

より、合理的な施工管理を行うことができた。

参考文献

- 1) 田村英毅, 斉藤亮, 今井正智: MMST工法を用いた施工 首都高川崎縦貫線 大師ジャンクション, トンネルと地下, 第30巻3号, pp.13~20, 1999.3
- 2) 青柳隆浩, 今井正智, 柳井修司, 坂田昇: MMST工法における鋼殻内部充填コンクリートの配合検討, 土木学会第 54 回年次学術講演会概要集第V部門, pp. 922~923, 1999. 9