論文 コンクリートの強度および種類が RC パネルのせん断性状に 及ぼす影響

伊藤 正通^{*1}·加藤 佑介^{*2}·金久保 利之^{*3}

キーワード:RCパネル,二軸性状,純せん断,応力-歪関係,軟化域

1.はじめに

補強材(鉄筋)とコンクリートを組み合わせ た鉄筋コンクリート(以下 RC)パネルのせん 断性状に関する研究の 1 つに Collins 等の Modified Compression-Field Theory¹⁾ (以下 MCFT)が挙げられる。この研究では、引張力 を受けるコンクリートの圧縮特性、引張応力-歪関係での軟化域、ひび割れ面での骨材の噛み 合わせによるせん断応力伝達の3点を考慮に入 れた RC パネルのせん断性状を把握する方法を 提案している。しかし、この研究では、実験が 一種類のコンクリートについてのみ行われてお り、コンクリートの差異による影響を考慮して いるとは言い難い。そこで、本研究では、Collins 等の研究で用いられたコンクリートとともに、 より高強度のコンクリートおよびモルタルを用 いた RC パネル試験体を作製し、同様の実験、 解析を行うことによって, Collins 等の評価方法 の妥当性を検討することを主な目的としている。

2.実験概要

2.1 試験体

試験体は 300×300×25mm の RC パネルで,

*1 筑波大学大学院(正会員)

*2 筑波大学

*3 筑波大学講師 機能工学系 博士 (工学) (正会員)

加力装置固定用孔を 24 カ所,変位計固定用ボル トを 4 カ所に設け,試験体辺に対して平行に縦, 横補強筋を 75mm 間隔に配した。また,端部に は試験体の掴み部破壊を防ぐため,各辺ともに 辺から 5mm と 25mm の位置に異形鉄筋 D4 を配 した。図-1 に試験体を示す。変動因子はコンク リート 3 種 (コンクリート 2 種,モルタル 1 種) と縦,横補強筋として用いた異形鉄筋 3 種(D3, D4, D6) である。表-1 に試験体一覧を示す。 また,図-2 に試験体名称の詳細を示す。

		H-1-3/	11 26		
	圧縮	補強材(@75)			5)
試験体名	目標強度	横筋	ρ_x^*	縦筋	ρ_{y}^{*}
	(MPa)		$(x10^{-5})$		$(x10^{\circ})$
C2-D33	20	D3	2.83	D3	
_C2-D34		D4	5.02		2.83
C2-D36		D6	11.3		
C2-D44		D4	5.02	D4	5.02
C2-D46		D6	11.3		
C2-D66				D6	11.3
M5-D33	50	D3	2.83	D3	2.83
M5-D34		D4	5.02		
M5-D36		D6	11.3		
M5-D44		D4	5.02	D4	5.02
M5-D46		D6	11.3		
M5-D66				D6	11.3
C5-D33		D3	2.83	D3	2.83
C5-D34		D4	5.02		
C5-D36		D6	11.3		
C5-D44		D4	5.02	D4	5 02
C5-D46		D6	11.3	D4	5.02
C5-D66				D6	11.3

表-1 試験体一覧

*鉄筋比 *Sa*/(*b*・*t*) a:鉄筋断面積 b:パネル幅 t:板厚

図-2 試験体名称

2.2 使用材料

コンクリートはそれぞれ設計強度を 20MPa, 50MPa とし,いずれも最大径 8mm の粗骨材, 最大径 2.5mm の細骨材と普通ポルトランドセ メントを用いた。また,モルタルは設計強度を 50MPa としたプレミックスモルタルを用いた。 コンクリートとモルタルの力学的特性を表-2 に示す。また補強筋として用いた鉄筋は,異形 鉄筋 D3, D4, D6 である。鉄筋の力学的特性を 表-3 に示す。

2.3 加力・計測方法 加力には写真-1 に示す加力装置を用いて、24

表-2 コンクリート・モルタルの力学的特性

コンクリ	圧縮強度	ヤング係数	割裂強度	
ート名称	(MPa)	(GPa)	(MPa)	
C2	23.0	21.4	2.60	
M5	48.5	20.5	3.09	
C5	48.1	35.4	3.59	
注い加力時材料は C2 が 28~20 日 M5 が 20~21 日 C5				

注)加力時材齢は C2 が 28~29 日,M5 が 29~31 日、C5 が 31~32 日である。

表-3 鉄筋の力学的特性

洲欲扬粉	降伏強度	ヤング係数		
<u></u>	(MPa)	(GPa)		
D3	222	225		
D4	290	200		
D6	412	186		

本の油圧ジャッキを使用し、試験体の対角方向 にそれぞれ引張力と圧縮力を加え、その合力に よって純せん断力を与える方式を用いた。加力 はジャッキの油圧系統を引張側と圧縮側の2系 統に分け、引張力、圧縮力が同一になるよう荷 重制御で行った。計測項目はジャッキ1本あた りの荷重値、試験体標点間の変形量、主な位置 での鉄筋歪である。図-3に変位計設置位置、図 -4に歪ゲージ位置を示す。両図中の矢印はジャ ッキによる加力の方向を表す。変位計は試験体 の表面(西側面)、裏面(東側面)に設置し、両 面の各辺に対し平行な位置(辺から 50mm)に 4箇所,引張方向の対角線上に1箇所設置した。 また歪ゲージはゲージ長 1mm のものを使用し た。

写真-1 加力装置

3 実験結果

3.1 破壞経過

実験で得られたデータから次式を用いてパネ ルのせん断応力、せん断歪を算出した。

$$\tau_{xy} = 3\sqrt{2} \cdot P / (t \cdot b)$$
(1)

$$\gamma_{xy} = (\sqrt{2} \cdot \delta_5 - (\delta_1 + \delta_3) / 2 - (\delta_2 + \delta_4) / 2) / l_0(2)$$
ここで、

$$\tau_{xy} : パネルのせん断応力$$

$$\gamma_{xy} : パネルのせん断歪$$

$$P : ジャッキ1本あたりの荷重$$

$$t : パネルの厚$$

b:パネルの幅
 δ_i:変位計の伸び量(図-3と対応)
 l_a:評点間距離

図-5 せん断応カーせん断ひずみ関係

せん断応カーせん断歪関係の実験結果の例を 図-5 に示す。同図は縦筋,横筋ともに D3 を使 用した 3 体の試験体を示している。最終的に端 部破壊を起こした試験体も見られたが,ほぼす べての試験体においてトリリニア型のグラフを 得ることができた。これは破壊過程が,コンク リートのひび割れ,鉄筋の降伏,コンクリート の圧壊の順に発生するためである。表-4 に実験 結果の一覧(試験体ひび割れ発生時せん断応力, 歪,最大荷重時せん断応力,終局せん断歪,最 終破壊形式)を示す。なお試験体の破壊形式は 鉄筋破断,端部破壊,コンクリートの圧縮破壊 の 3 種類である。D33,D34,D44 試験体では, 破壊前までに全ての歪測定位置で補強筋の降伏 がみられた。

3.2 最大せん断応力の比較

コンクリートの圧縮強度と各試験体の最大せ ん断応力の関係を図-6に示す。図中のプロット 右の矢印は端部破壊した試験体で、応力がさら に大きい可能性のあるものについて示した。

4.コンクリートの主応カー主歪関係の検証 本研究では実験で得られた変位計による歪

試験体 名	ひび割れ 発生時せ ん断応力 (MPa)	ひび割 れ発生 時歪 (×10 ⁻³)	最大せ ん断応 力 (MPa)	終局せ ん断歪 (×10 ⁻³)	最終 破壊 形式
C2-D33	1.81	0.03	2.16	24.9	破断
C2-D34	1.66	0.37	2.34	78.6	圧壊
C2-D36	0.76	0.02	2.75	0.68	端部
C2-D44	1.37	0.06	2.71	0.91	圧壞
C2-D46	1.86	0.13	2.72	1.92	端部
C2-D66	1.42	0.26	3.04	2.69	破断
M5-D33	1.83	0.04	2.08	6.56	圧壊
M5-D34	1.03	0.30	2.58	9.54	端部
M5-D36	1.07	0.04	2.68	10.8	端部
M5-D44	1.26	0.05	2.73	50.6	圧壊
M5-D46	1.39	0.14	3.21	2.67	端部
M5-D66	1.12	0.11	4.91	3.17	端部
C5-D33	1.67	0.12	2.56	4.02	端部
C5-D34	2.03	1.33	2.57	37.8	端部
C5-D36	1.89	0.07	2.83	2.14	端部
C5-D44	1.57	0.36	2.93	46.1	圧壊
C5-D46	1.41	0.16	2.93	15.6	端部
C5-D66	1.66	0.16	4.03	1.53	端部

表-4 実験結果一覧

から,モールの応力円を用いてコンクリートの 引張,圧縮主応カ-主歪の関係および引張主応

カーひび割れコンクリートの圧縮強度の関係を 導き出し, MCFT で提案されている関係式と比 較検討を行った。

4.1 算出方法

コンクリートの主応カー主歪関係の導出は以 下の手順による。図-7 にパネルの応力, 歪状態 を示す。まず, 変位計の値から, x 方向の歪(*ε* x) と y 方向の歪(*ε*_y) が得られる。ここでモ ールの歪円を考えることによって, パネルの平 均引張主歪(*ε*₁), 圧縮主歪(*ε*₂)を得る。コ ンクリートと鉄筋の平均歪は同一と考え, 鉄筋 の応カー歪関係を考えることによって, 鉄筋が 負担する引張応力, 圧縮応力が求められる。コ ンクリートの応力は試験体に作用している全応 力から鉄筋の負担する応力を差し引いたものな ので, この関係からコンクリートの引張主応力 と圧縮主応力が得られる。図-8 にモールの歪円 を示す。

図-7 パネルの応力と歪の状態

図-8 モールの歪円

4.2 引張主応力-主歪関係

MCFT では、コンクリートの引張主応力と引 張主歪の関係を次式で提案している。

$$\begin{cases} f_{c1} = E_c \cdot \varepsilon_1 \ (\varepsilon_1 \le \varepsilon_{cr}) \\ f_{c1} = \frac{f_{cr}}{1 + \sqrt{200 \cdot \varepsilon_1}} \ (\varepsilon_1 \ge \varepsilon_{cr}) \end{cases}$$
(3)

ここで,

 $f_{cl}: コンクリートの引張主応力$ $<math>E_c: コンクリートのヤング係数$ $<math>\varepsilon_{cr}: コンクリートのひび割れ時の歪$

これらの関係式では、ひび割れが入る前では 引張応力は引張歪に比例し、ひび割れが入った 後では引張歪の増加にともない徐々に引張応力 が低下すると仮定している。なお*f*_{cr}はコンクリ ートのひび割れ強度で、以下の式で得る。

$$f_{cr} = 0.33\sqrt{-f_c} \tag{4}$$

ここで,

f_c: コンクリートの圧縮強度(負)(MPa)

C2 試験体について,(3),(4)式から得られた計 算結果と実験結果の比較を,図-9 に示す。圧縮 強度が 50MPa のコンクリートを使用した試験 体やモルタルを使用した試験体で,実験結果が 解析結果を下回るものがみられたが,おおむね 実験結果は計算結果に適合していた。

図-9 引張主応カー引張主歪関係(C2)

4.3 圧縮主応力-主歪関係

MCFTでは、コンクリートの圧縮主応カー圧 縮主歪関係を次式で提案している。

$$f_{c2} = f_{c2\max} \cdot \left[2 \cdot \left(\frac{\varepsilon_2}{\varepsilon_c} \right) - \left(\frac{\varepsilon_2}{\varepsilon_c} \right)^2 \right] \quad (5)$$

$$f_{c2\max} \qquad 1 \qquad (6)$$

$$\frac{f_{c2\max}}{f_c} = \frac{1}{0.8 - 0.34 \cdot \varepsilon_1 / \varepsilon_c} \le 1.0 \quad (6)$$

ここで

*f*_{c2}: コンクリートの圧縮主応力(負)
 *f*_{c2max}: ひび割れコンクリートの圧縮強度(負)
 ε_c: コンクリートの圧縮強度時歪(負)

(5)式は f_{c2max}=f_cのときの純圧縮状態でのコ ンクリートの圧縮主応カー圧縮主歪関係につい て表したものであり,(6)式は引張力が作用する コンクリートのひび割れに伴う圧縮強度の低下 を表したものである。C2-D33 試験体について, (5),(6)式から得られた計算結果と実験結果の比 較を図-10 に示す。

4.4 引張主歪-圧縮強度関係

実験より得られた $f_{c2max}/f_c \ge \varepsilon_1/\varepsilon_c$ の関係を 図-11 に示す。また(6)式による計算値を破線で 示す。なお図-11 において図-8 で示したモール の歪円が y 軸に交わらず、 f_{c2max} を計算すること ができなかった試験体は除外した。C2,C5 試験 体では、コンクリートの強度にかかわらずおお

図-11 引張主歪-ひび割れコンクリート関係

むね MCFT による結果に近い値が得られた。し かしモルタルを用いた試験体では,実験結果が 提案式よりも下回る傾向が見られる。これはモ ルタルがコンクリートと比べて骨材による影響 がないために, f_{c2max}が早く低下するためである と考えられる。モルタル試験体について最小二 乗法による回帰計算を行った結果,次式を得た (二乗残差 0.28)。なお本実験により得られた横 軸の値の範囲は 0.926 から 7.033 である。

$$\frac{f_{c2\max}}{f_c} = -\frac{1}{0.95 \cdot \varepsilon_1 / \varepsilon_c} \le 1.0 \tag{7}$$

M5-D44 試験体のせん断応カーせん断歪関係 を例にとって,(6)式と(7)式による解析結果の差 異を図-12 に示す。せん断応カーせん断歪関係 の形状は変化しないが,せん断歪が増大すると, (7)式による場合の *f*_{c2max} が低下し,圧縮破壊が 早期に生ずることになる。

5.まとめ

MCFT の提案式によるコンクリートの引張, 圧縮主応カー主歪関係の計算結果と実験結果を 比較した結果,モルタルを用いた試験体の引張 主歪-圧縮強度の関係において若干の相違が見 られ,モルタルの場合の引張主歪-圧縮強度関 係については新たな関係式を提案した。一軸圧 縮強度が 20MPa および 50MPa クラスのコンク

図-12 M5-D44 のせん断応カーせん断歪関係

リートを用いた試験体については計算結果が実 験結果に適合しており Collins 等の提案式はお おむね妥当なものであるといえる。

参考文献

 Vecchio,F.J and Collins,M.P: The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Journal, pp.219-231, March-April 1986