論文 スプライス PC 構造に関する実験的研究について

今村 晃久*1·毛利 忠弘*2·天野 明子*3·角田 與史雄*4

要旨:工場製プレテンション・プレキャスト桁と場所打ちコンクリート部材をポストテン ション鋼材で一体化を図った「スプライス PC 構造」は、基本的に既存技術によって成立 する構造であるが、強度の異なるコンクリート打ち継目を有し、断面形状の急変を伴うた め、打ち継目の安全性検証と設計手法検証が必要と考え、曲げとせん断に対する模型供試 体を用いた繰り返し載荷実験を行った。本論ではその内、曲げに対するシリーズに対して、 ひび割れ発生限界、終局耐力、復元力特性、さらに重ね継手とループ継手の比較に関する 検証結果を述べる

キーワード:プレストレストコンクリート、打ち継目、重ね継手、ループ継手

1. はじめに

工場製プレテンション・プレキャスト桁と場 所打ち部材をポストテンション鋼材で一体化を 図った「スプライス PC 構造」が設計的に十分 な安全性を有していること、適用支間 40m~ 60m において場所打ち箱桁構造に対して 20% 近いコスト縮減効果があること等を設計的検証 ⁴⁾で明らかにしてきた。本構造は従来 PC 技術の 範疇であり、現行設計基準にて設計可能である が、打ち継目部は強度の異なるコンクリートの 接合である上に、断面剛性が急変することの影 響により、一般部に比べてひび割れ分散性や耐 力等の算定に何らかの配慮が必要と予想された ため、実験による検証を行うこととした。

2. 実験概要

2.1 実験目的

現在の設計基準¹⁾では、片持ち張出し施工等 で不可避なコンクリート打ち継目に対して、適 切な鉄筋継手と連続した PC 鋼材の配置を前提 として、通常断面と同様の手法による設計が可 能である。しかし、本構造は先に延べたように

- 従来とは異なる打ち継目を有している上に,打 ち継目部の PRC 設計も視野に入れている。 そこで,履歴復元力特性とエネルギー吸収性能 の確認に加え,以下に示す項目の影響の把握を 目的として,継目部を再現した模型に対する静 的繰り返し載荷実験を行うこととした。
 - ① 重ね継手とループ継手の比較
 - ② 断面急変の影響
 - ③ コンクリート強度(付着強度)が異なることの影響
 - ④ 接合部横桁の拘束効果

特に①を検討項目に挙げたのは、本構造が搬 送限界に近い工場製プレキャスト桁の使用を想 定しており、継手長を短く出来る可能性を検証 するためである。本実験は曲げとせん断に対す る検証のため、2セットの供試体を用意した。本 論ではその内の曲げに対する検証の結果を述べ るものとする。

2.2 供試体概要

実験には後打ち部断面形状の違い(I型,矩形)と,継手形式の違い(重ね継手,ループ継手)で M1~M5, さらに M4 と M5 に横方向プ

- *1 ドーピー建設工業㈱ 本社設計部設計課長(正会員)
- *2 ドーピー建設工業㈱ 本社設計部設計課長代理
- *3 ドーピー建設工業㈱ 本社設計部設計課
- *4 北海道大学大学院工学研究科 工博(正会員)

- 847 -

レストレスを導入した MC-1, MC-2 の計7供試 体を用意した。各々の供試体諸元を表-1に,供 試体形状,鋼材配置図を図-1に示す。M-1の基 準梁は下縁側全長にわたりプレテンション鋼 材を,その他については,図-1 e)に示すプレ テンション鋼材とポストテンション鋼材を配 置した全長 3.0mの単純梁とした。プレテンシ ョン部は部材長 1.6mと短く,プレテンション 鋼材の緊張力ロスが発生するため,桁端部に 定着体を設けて,ロスを減少させるよう配慮 した。打ち継目側については,実橋と同様に定 着体を設けずにプレテンション鋼材を突出さ せた。尚,打ち継目部は,今回の実験では洗い

供	試体	打 継 目の	断面	形状	コンクリート 強度(N/mm ²)		朝村7 銀力()	有効 緊 N/mm ²)	鉄筋維	側方
NO.	記号	有無	プレキャス ト部	後打 ち部	プレキャス ト部	後 打 ち部	プレ テンション	ポ スト テンション	手種類	刑米
1	M-1	無	២	-	60	-	940	-	-	無
2	M-2	有	囤	熞	60	40	940	940	重ね	無
3	M-3	有	២	坶	60	40	940	940	1-7	無
4	M-4	有	囵	矩形	60	40	940	940	重ね	無
5	M-5	有	囤	矩形	60	40	940	940	ループ	無
6	M-CI	有	熞	矩形	60	40	940	940	重ね	有
7	M-C2	有	咽	矩形	60	40	940	940	ループ	有

表-1 供試体諸元

表-2 鋼材の機械的性質

編けの新新	断面積	降伏点	引張強さ	弹性係数	伸び
新新日本	(mm ²)	(N/mm ²)	(N/mm ²)	(ktN/mm ²)	(%)
SWPR7A Ø 9.3	51.61	1705	1821	195	62
SD295A D6	31.67	375	516	210	27
SD295A D13	126.7	354	490	210	27

表-3 コンクリートの配合表

ĺ	目標 強度	粗制材 最大寸 法	ホラノブ	空交量	水北 小 比	細骨材 率	単位量(kg/m ³)					
							*	tx/	細树	粗骨材))))))))))	
	(N/mm²)	(mm)	(an)	(96)	WC (%)	s/a(%)	w	с	s	G		
A	60	20	8	40	322	4L0	150	466	708	1063	373	
B	40	20	8	40	37.2	4L0	150	404	730	1093	323	

表.4	鋼材の	竪 張力
<u> </u>	2411 (V) V)	糸灰刀

	鋼材の種類	断面積	降伏点	引張 強さ	初期 緊張力	載荷時 張力
		(mm²)	(N/mm²)	(N/mm ²)	(N/mm²)	(N/mm²)
プレテン	SWPR7A \$\$9.3	51.61	1705	1821	1030	924
ポ ステン	SWPR7A \$\$9.3	51.61	1705	1821	1200	935
横拘束	SBPR 930/1080 \$	530.9	930	1079	600	570

 (注): ポストテンションは片引きとし、Pull in 3mmを設定 載荷時張力は計算値

図-1 供試体形状, 鋼材配置図

出しのみの処理とした。使用した材料及び,強 度特性については,表-2~4にまとめた。

2.3 載荷方法と耐力算定

荷重載荷位置は、打ち継目で破壊がおこる ように定めた。図-2には載荷位置と共に、断面 力の作用状態も表示した。載荷位置を決定する 際の終局耐力の算定は、「土木学会コンクリー ト標準示方書 設計編」¹⁰の規定に基づいて行っ た。尚、せん断破壊が先行して発生しないよう に、せん断耐荷力が曲げ耐荷力の 1.5 倍以上に なるよう設計した。その際の、部材係数 γ b. 材 料係数 γ mについては、1.0 として計算を行った。 表-5 に示すコンクリート強度試験の結果を用 いた耐力算定結果を表-6 に示す。

鉄筋塑性域での静的繰り返し載荷に際して は,継目部の変位量で制御し,2.5mm,5mm, 7.5mmの各段階で除荷した後,破壊まで載荷 した。尚,供試体には図-3に示すように,歪ゲ ージ,コンタクトゲージ,変位計,亀裂変位計 を設置し,計測を行った。

3.実験結果と考察

3.1 供試体破壊性状

載荷実験の結果を表-7 にまとめる。7 体の供 試体の内, MC-1 のみが場所打ち部載荷点で破 壊したが, 継目の無い M-1 を含め, その他は全 て継目位置で破壊した。M-1 (一体打ち), M-2 (重ね継手), M-5 (ループ継手) に対する戴 荷実験終了後のひび割れ状態を図-4 に示す。継 目を有する供試体 M-2~M-5 はいずれも, 継目

表-5 強度試驗結果

		プレキャスト側	後打ち側	
		N/mm ²	N/mm ²	
影车	設計用値	3.50E+04	3.10E+04	
伊住	M-5	3.36E+04	2.74E+04	
01.30	M-1~MC-2	3.65E+04	3.04E+04	
压绞	設計基準強度	60.0	40.0	
<u> 二 稲</u> 論 庶	M-5	64.2	42.6	
	M-1~MC-2	72.6	50.0	

表-6 供試体の耐力計算結果

		プレキャスト側 (fck=60N/mm ²)						打ち継目				場所打ち側(fck=40N/mm ²)					
No.	記号	曲げ 耐力	曲げ 耐力時 せん新力	曲げ 耐力時	曲げ 耐力時	せん断耐 力	耐化	岢力	曲げ	せん断	耐	荷力	曲げ	曲げ 耐力時	せん断	耐	箭力
					(曲げ)	(せん断)	耐力	伝達耐力	(曲げ)	(せん断)	耐力	せん断力	耐力	(曲げ)	(せん断)		
		Mu	S	Vu	Pm	Ps	Mu	Vcw	Pm	Pcw	Mu	S	Vu	Pm	Ps		
		(ktN·mo)	(kN)	(kN)	(kN)	(kN)	(ktN·m)	(kN)	(kN)	(kN)	(krN·m.)	(kN)	(kIN)	(14N)	(kN)		
1	M-1	74.4	78.3	137.8	156.6	275.6											
2,3	M-2,M-3	88.1	92.7	143.4	185.5	286.8	85.9	400.0	180.8	800.0	70.1	73.8	135.1	147.6	270.2		
4	M-4	88.1	92.7	143.4	185.5	286.8	85.9	400.0	180.8	800.0	70.1	73.8	250.9	147.6	501.8		
5	M-5	88.0	92.6	141.4	185.3	282.8	85.8	371.3	180.6	742.6	69.9	73.6	246.9	147.2	493.8		
6,7	M-C1,C2	88.1	92.7	143.4	185.5	286.8	85.9	400.0	180.8	800.0	70.1	73.8	250.9	147.6	501.8		

でひび割れが発生した後、後打ち部、プレキャ スト部の順にひび割れが発生した。荷重増加に よるひび割れの進展は、プレキャスト部、継目、 後打ち部で差異が見られ、後打ち部では新たな ひび割れが発生しながら進展していくのに対し て、 プレキャスト部ではひび割れ間隔が大きく、 最初に入ったひび割れの幅が増大していった。 プレキャスト部最下縁の鉄筋が降伏歪みを超え たあたりから、継目の下縁が開きはじめ、除荷 時においても継目は閉じなかった。その後の荷 重載荷により継目の開口が大きくなり、V 字型 に変形し上側コンクリートが圧縮破壊した。ま た,残留変位を最大変位で除した値を復元率と 定義し、計算値を表-8 に示すが、除荷後の変形 復元率が、基準供試体 M-1 に比べて一様に低い 傾向にあった。横拘束を有する MC-1, MC-2 に ついては、計測値は他と同様の傾向があるもの の、目視による継目のひび割れ発生は遅く、継 手の違いにより破壊箇所が異なった。ループ継 手を有する全供試体共,継手位置にひび割れは 発生しておらず、重ね継手のものに比べ継目の ひび割れ成長が早いという特徴を有していた。

3.2 考察

実験値と計算値の比較を表-9に示す。 (a) ひび割れ発生について

継目の荷重-ひび割れ幅の関係を図-5, さら に図-5の内, 載荷初期の様子を図-6に示す。M-2 ~M-5 供試体では, 最初のひび割れ発生が載荷 荷重 30kN付近で継目の位置において確認さ れた。載荷荷重・プレストレス力から下縁コン クリート応力度を計算すると-2.3N/mm²であり, コンクリートの引張強度¹⁾ f_{tk}=-2.69N/mm² (=0.23f'ck^{2/3})の約84%程度であった。図-6に 示すように,各供試体共,ひび割れ発生限界が 低く,継目のコンクリート引張強度は一体打ち に比べ低いことが改めて確認された。しかし, 横拘束のある MC-1, MC-2 では,ひび割れ発生 荷重に若干の改善が見られた。

(b) 継手性状について

重ね継手とループ継手の比較では, 重ね継手

表-7	実験	結果の)まる	とめ
-----	----	-----	-----	----

					•		-				
(#.\$	*#* 2	継日	ひび割れ発生	1) 鉄筋	最大	2)	3) Tots Jak	──降伏 (載征	: 変 位 時点)	終局変 (載荷点	位 ()
D. D	177 71	有無	荷重	初降伏	荷重	做職	做職形態	プレキャ スト側	後 打 ち側	プレキャ スト側	後打 ち側
NO.	記号		P _{ar} (kN)	P _{y0} (kN)	P _s (kN)			δ _y (mm)	δ _y (mm)	δ _e (mm)	δ (mm)
1	M-1	無	80	111	220	A	a	1.9	2.1	13.6 ⁵⁾	14.7 ⁵⁾
2	M-2	有	29	100	202	A	a	2.2	2.2	27.4	25.9
3	M-3	有	30	105	197	A	a	2.6	2.5	26.1	26.8
4	M-4	有	30	103	200	A	a	2.3	2.3	22.0	21.2
5	M-5	有	32	99	179	A	a	4.5	4.5	42.1	41.5
6	м-сі	有	42 ⁶¹	104	156	B	b	2.0	2.2	14.1	22.0
7	M-C2	有	40	105	202	A	a	1.9	2.0	15.1	15.7
1)	初降	伏荷	重は,	引張最	外縁	の鉄魚	筋が	俸伏 歪	みとた	よる荷	重
2)	A :	打ち	継目,E	:場所	斤打側	載荷,	点				
3)	a:):	王縮音	形破壞,	b:荷	重値の)上昇	が無	€くな 	り載荷	i終了	
4)	終后)发位	は、弟	大何里	国~除	荷に	おけ	る最大	て変位	me / 1.	. د. ۱
5)	M-I	(円)	後の飛	同发生	工作に	, 我) 出上了	て何. 西海子	風に お いれ	うける。	安住と	した。
0)	MC-	1 141	~~~~~	\$55 F2 \$ J	10,145.1	U /53.14	义 编文 /	C.N., /	中就順	LIAREI	コッル国
M	-1 (·	一体	打ち)	ĥ	6		N				
				V.	۱ 		∇				
				~			ori Ny ING-				
	L.		74	7-1	$\left \frac{1}{1} \right $	-}-	{; }	f_{r}	1		
4	<u>A</u>				ما در المرالي. ا	فننتطنين					A
	a (*	≠- la	Why	h		_	0				
M -	2 (]	重ね	桃子,	∕ ∦		ŧ 					
F			3 i i i	1	• <i>47</i> 7		•••	· • · · · ·			n :
		<u> </u>	<u> </u>	7-1	1	<u>I</u>	17	\rightarrow	77		Ч.,
U	Å				<u>72 * 1 : </u>	<u>rit</u>	1.11.	<u></u>	<u></u>		A
M-	5 (,	ルー	プ継	手)							
	Ì			Ň						$\alpha/1$	
Terrer	***	\$% \$\$()			<u></u>		<u> </u>	A		444 / 2000A	
1				71		Ť.	31) \	13	ê.	
-	<u>x</u>			11		<u>II</u>	101		1.)		A
1622 ⁽ 179 8		0.00005 🕱			*************				***************************************	1997 - 199 7 - 1997	

図-4 実験終了後のひび割れ状況

	プレ	ノキャスト	側	場所打ち側							
	最大変位	残留変位	省二家	最大変位	残留変位	# = w					
	(mm)	(mm)	1夏几年	(mm)	(mm)	12.几乎					
M-1	14.7	7.1	0.51								
M-2	27.4	19.8	0.27	25.9	18.7	0.28					
M-3	26.1	18.9	0.28	26.8	19.2	0.28					
M-4	22.0	13.1	0.40	21.2	12.9	0.40					
M-5	42.1	36.9	0.12	38.8	33.8	0.13					
MC-1	14.1	7.7	0.45	22.0	14.0	0.36					
MC-2	15.1	8.2	0.46	15.7	8.4	0.47					

表-8 載荷点変位と復元率

表-9 実験値と計算値の比較

				実験値		計算値			
供試体名		着目 箇所	曲げひ び割れ	鉄筋 初降伏	最 大 荷重	曲げひ び割れ	鉄筋 初降伏	最大 荷重	
NO.	記号		P _{cr} (kN)	P _{y0} (kN)	P _u (kN)	P _{cr} (kN)	P _{y0} (kN)	P _u (kN)	
1	M-1	中央	80	111	220	83	112	157	
2	M-2	継目	29	100	202	39	74	186	
3	M-3	11	30	105	197	39	74	186	
4	M-4	"	30	103	200	39	74	186	
5	M-5	"	32	99	179	39	74	185	
6	M-C1	場所打	42	104	156	39	74	148	
7	M-C2	継目	40	105	202	39	74	186	

-850-

を有する供試体で、継手部にひび割れが発生し ているが、 ループ継手部にはひび割れは生じて いなかった。これは、ループ継手が互いに引張 られることで、ループ継手内に荷重による引張 り力が低減される(圧縮応力が生じている)領 域が形成されるため、継手部の歪みが継目部に 集中し, M-5 のように大きなひび割れに成長し たと思われる。尚、同じループ継手を有する M-3とM-5の比較でも、特にM-5のひび割れ幅 が大きいことについては、図-7 に荷重-変位の 関係について実験値と ADINA による非線形解 析の結果を示すが、解析値と M-5 の実験値が近 く、解析上で引張り鉄筋の付着切れが生じてい たことから考えて、M-5 供試体の載荷時材令が 40 日程若いために他と比較して若干強度が低 く, それに伴う付着強度も低かったため, プレ キャスト側の引張り鉄筋の付着切れがM-3より 早期に起こったと思われる。

(c) 変位復元特性について

鉄筋塑性域での静的繰り返し載荷による荷重 -変位の関係(載荷点変位)を図-8に示す。M-1に 比べ,荷重を除荷した時の残留変位が大きく, RC 構造に近いヒステリシスを描いた。エネル ギー吸収性能はよいものの,当初に意図したポ ストテンションによる復元力特性が生かされな い結果となった。これは,PC 鋼材を引張縁では なくほぼ断面図心に配置したため,引張鉄筋位 置でのプレストレス力は0.87N/mm²と直接に鉄 筋を押し戻す力が不足したのが原因と考えられ る。この点に関しても横拘束がある場合には, M-1に近い挙動を示している。

(c) ひび割れ幅について

継目部のひび割れ幅の実験値と計算値の比較 を図-9に示す。計算値はひび割れ幅の算定式¹⁾ において, k=2.0とすることで継目部の鋼材付着 性状を考慮したが,実験値とよく一致し,同式 により打ち継目部のひび割れ幅の推定が可能と 思われる。

(e) 最大耐力について

最大耐力に関しては、M-5供試体が計算値の

- 851 -

97%となった以外は、全ての継目を有する供試 体で 5~9%程度計算値を上回っており、本構造 の継目部における終局耐力は一般部と同程度と 考えることが出来る。

(f) じん性率について

最下縁鉄筋降伏時の変位を供試体の降伏変位 とした場合のじん性率は概ね 10 程度という結 果となった。よって、特にじん性を要求される ラーメン構造にも本構造の適用が可能と考える。

4. まとめ

本構造の特徴は、ひび割れ発生限界は低いが、 一般部と同程度の終局耐力は有しているという ことであるが、これは本構造の特徴というより は、打ち継目を有する構造の特徴と考えられ、 ひび割れを内部的に有している構造と言える。 本実験の範囲内で得られた知見を以下に述べる。

(1) 横拘束の無い供試体のひび割れ発生荷重 は、計算値の 84%程度であり、ひび割れ発 生限界の算定に際し、コンクリートの引張 強度の低減係数が必要である。

- (2) 横拘束のある打ち継目のひび割れ発生荷 重は計算値とほぼ一致し, MC-1 供試体が 場所打ち側で破壊したことから明確な効 果が確認出来たが,荷重-ひび割れ幅の関 係は他と同様であり,設計的に考慮するに は,今後の定量的検証が必要である。
- (3) 打ち継目におけるひび割れ幅の算定は, 鋼材の付着特性値 k を適切に選ぶことにより, 土木学会式¹⁾で推定可能である。本実験では, 異形鉄筋 D6 と PC 鋼材 φ 9.3 の併用で k=2.0 となった。
- (4) 終局耐力については, 継目を有していても 現状の計算手法で対応可能である。
- (5) ループ継手の継手強度は重ね継手に比べ て高いと考えられるが,耐力的効果は認められず,集中して使用する場合には,ルー プ継手の特性が継目に悪影響を及ぼす可 能性があると思われる。今後,この点に関 する検証が必要と考える。

参考文献

- 1) 土木学会 : コンクリート標準示方書 設計 編 平成8年制定
- 2) 二羽淳一郎,山田一宇,横沢和夫,岡村 甫: せん断補強筋を用いない RC はりのせ ん断強度式の再評価,土木学会論文集 第 372 号/V-5, pp.167~176
- 3) 伊藤忠彦,山口隆裕,池田尚治 : プレキャ ストセグメントはりの曲げせん断特性に関 する実験的研究,プレストレストコンクリ ート Vol.39, No.1, pp.83~96
- 4) 今村晃久, 毛利忠弘, 石戸良平, 加地 久 :
 スプライス PC ホロー構造の特性について,
 第8回 プレストレストコンクリートの発展
 に関するシンポジウム論文集 pp.203~208
- 5) 今村晃久,毛利忠弘,天野明子,角田與史 雄: スプライス PC 構造に関する実験的研 究について,第9回 プレストレストコンク リートの発展に関するシンポジウム論文集 pp.115~120