# 報告 カップラー接合具で連結したプレキャストコンクリート逆T型 擁壁の力学的挙動

森末 美紀子\*1·長友 克寬\*2·松山 哲也\*3·下村 誠一\*4

要旨:本報告では,まず,カップラー接合具によって鉛直壁下部を連結したプレキャスト コンクリート製逆T型擁壁の曲げ試験を実施し,その鉛直壁の曲げ耐力およびせん断耐力 が土木学会コンクリート標準示方書の規定式に基づく計算値以上であることを確認した。

次に,実験結果との比較を通して,接合具締め付け時,曲げひび割れ発生前および発生 後の3つの段階における鉄筋およびコンクリートの応力度の評価方法について考察した。 キーワード:プレキャストコンクリート,逆T型擁壁,カップラー接合具,設計法

1. はじめに

プレキャストコンクリート(以下PCaと略 記)製逆T型擁壁は,製作,運搬,設置という 施工上の制約から,その大半が高さが3m程度 以下の小型のものに限定されているのが現状で ある。もし,高さが4mを超える比較的大型の 擁壁のPCa化が容易に可能になれば,品質管 理の大幅な改善に加えて,施工時の工期短縮, 省力化,廃材の減量化,そしてこれらに伴うコ ストの低減が実現できる。

擁壁のPCa化に際して特に要となるのは, その接合方法である。何故ならば,擁壁の製作 および施工上,接合面は鉛直壁基部に近い位置 となるが,この接合面には非常に大きな曲げ モーメントとせん断力の両方が作用するためで ある。接合方法には,その簡便性に加えて,接 合面での確実な強度確保が求められることにな るのである。

このような状況の中で,近年,PCa部材の 接合方法として鋳鉄製カップラー接合具を用い た方法が開発され注目されている。この接合具 を用いたRCはりの実験によれば,一体型のは りと同等の曲げ耐力およびせん断耐力を得られ ることが確認されている<sup>1)</sup>。 本報告は、鉛直壁下部の連結にこのカップ ラー接合具を採用した実物大のPCa擁壁を対 象とし、(1)その製作方法について種々の確 認・検討を加えること、(2)曲げ破壊試験を 行い、接合面を含めた鉛直壁の力学的性状を明 らかにすること、および(3)実験結果に基づ き鉛直壁の合理的設計方法を確立すること、の 3つを主目的として実施したものである。

#### 2. 実験概要

#### 2.1 試験体の作製方法

試験体の形状・寸法を図-1に示す。試験体 は、高さ 4000 mm、底版幅 3500 mm、奥行き 1000 mmのPCa製逆T型擁壁である。

試験体は、高さ406 mm の鉛直壁部分をもつ 底版と、残りの鉛直壁部分とを別々に作製し、 コンクリート材令2週間にてカップラー接合具 (以下,接合具と略記)によって連結すること により組み立てた。接合面の形状を図-2に示 す。接合面のせん断耐力を確保するため、面に は1液性接着剤を塗布することに加えて、中央 部に幅 198 mm のせん断キーを設けるとともに 径32 mm のジョイントピンを3個配置した。さ らに、アンカー筋をスターラップで拘束した。

\*1 高松工業高等専門学校専攻科 建設工学専攻 (正会員)
\*2 高松工業高等専門学校 建設環境工学科 博士(工学)(正会員)
\*3 日本興業(株) 開発部 (正会員)

\*4 日本興業(株) 開発部



アンカー筋

せん断キー ジョイントピン 図ー 2 接合面(単位 mm)

なお,接着剤およびせん断キーには,接合面で の止水の役割も兼ねさせている。

接合具の概要を図-3に示す。接合具は,鉛 直壁前面に1カ所,背面に3カ所の計4カ所に 配置し,トルクレンチを用いて550N·mのトル クを導入した。トルクは,200,400,550N·m の3段階に分け,各段階毎にそれぞれのカップ ラーを締め付けた後,最終的に外付けロック ナットによって固定した。ナットの締め付け終 了後,無収縮早強モルタルを接合具周囲のコン クリート切り欠き部(以下,ポケットと略記) に充填し,その翌日に試験を実施した。

使用した鋼材およびコンクリートの力学特性 をそれぞれ表-1および表-2に示す。

### 2.2 載荷·測定方法

試験体は2体作製し,鉛直壁の基部からそれ

接合具雌ねじ部 接合具雄ねじ部 図ー 3 接合具

| 表-1 | 使用鋼材の性質 |
|-----|---------|
|-----|---------|

アンカー筋

| 使用鋼材                | 公称断面積<br>As (mm <sup>2</sup> ) | 降伏強度<br>fy (MPa) | 引張強さ<br>fu (MPa) | 弾性係数<br>Es (GPa) |
|---------------------|--------------------------------|------------------|------------------|------------------|
| 主鉄筋<br>SD295A-D16   | 198.6                          | 363.5            | 535.1            | 202.3            |
| アンカー筋<br>SD295A-D25 | 506.7                          | 328.0            | 526.1            | 195.6            |
| カップラー<br>接合具        | 872.6                          | 370.0            |                  | 98.0             |

表-2 使用コンクリートの性質

| 試験体名 | 圧縮強度<br>fc'(MPa) | 弾性係数<br>Ec(GPa) |  |  |
|------|------------------|-----------------|--|--|
| W12  | 36.8             | 22.6            |  |  |
| W16  | 44.6             | 25.0            |  |  |

ぞれ高さ1200mm および 1600mm の位置に水平 力を加え,曲げせん断挙動を観察した。以下で は,この水平荷重の作用位置に対応させて,両 試験体をそれぞれW12およびW16と記す。な お,試験体W16は,鉛直壁のさらに高い擁壁を



想定したものである。試験体の水平変位は前方 底版前面に山形鋼を配置することにより,回転 は後方底版をH型鋼と4本の鋼棒とで鉛直方向 に締め付けることによってそれぞれ拘束した。

主な測定事項は,鉛直壁前面の水平変位とコ ンクリート圧縮歪み,鉛直壁基部側面の回転 角,鉛直壁背面のひび割れ幅とコンクリート歪 み,そしてアンカー筋,重ね鉄筋および中間鉄 筋の歪みである。

#### 3. 実験結果の概要

## 3.1 ひび割れ状況

図-4に試験体W16の破壊時におけるひび割 れ状況を示す。まず,荷重P=66 kN付近で鉛 直壁基部に水平方向の曲げひび割れが発生し, それが壁幅全体に貫通後,接合面にひび割れが 発生した。その後,ポケット部上面を連ねるひ び割れおよび後方底版基部での鉛直方向へのひ び割れが発生した。鉛直壁の水平ひび割れは上 記の3本に限定された。最終的に,鉛直壁と底 版との接合部に斜めひび割れが進展した。

試験体の最大荷重は、2体とも後方底版基部 の曲げ引張破壊によって決まった。従って、鉛 直壁基部の曲げ耐力およびせん断耐力の実験値 は不明であったが、例えばW12では336.6kN・m および280.5kN以上であり、コンクリート示方 書規定式による計算耐力223.3kN・mおよび 245.1kNを上回り安全側となった。接合面のせ ん断耐力は、解析的な評価が難しいが、示方書 のせん断補強筋をもたないRCはりに対する計 算耐力以上を有することを実験的に確認した。

#### 3.2 変形挙動

**図-5**に荷重P-載荷点水平変位δp 関係を 示す。P≒150kN付近での接合部のひび割れ発



生を契機として変形剛性は小さくなったが,急 激な荷重低下は生じずに大変形域に至った。

図-6に試験体W16について,ひび割れ発生 前のP=50 kN時およびひび割れ発生後のP= 150 kN時における鉛直壁前面の水平変位分布を 示す。変位は,接合面より上部で急激に増加し た。また,接着剤層の大きな圧縮変形に伴い連 結された上部鉛直壁部分が回転し,上部鉛直壁 の接合部下面の方が下部鉛直壁の接合部上面よ りも後方に入り込み,変位は不連続となった。

#### 4. 接合具締め付け時の鉛直壁の力学性状

#### 4.1 アンカー筋応力度分布

位置 x におけるコンクリート中の鉄筋のすべ り S x は, コンクリート歪み  $\epsilon$  cx を小さいもの として無視すると, 次式で表される。

$$\frac{\mathrm{dSx}}{\mathrm{dx}} = \mathcal{E}\mathrm{sx} - \mathcal{E}\mathrm{cx} \approx \mathcal{E}\mathrm{sx} = \frac{\sigma\mathrm{sx}}{\mathrm{Es}} \tag{1}$$

鉄筋応力度  $\sigma$  sx と付着応力度  $\tau$  x との関係式 は,鉄筋の弾性係数をEs,周長を  $\phi$ ,断面積を As,直径をDとすると,

$$\frac{\mathrm{d}\sigma_{\mathrm{Sx}}}{\mathrm{dx}} = \frac{\phi}{\mathrm{As}} \cdot \tau_{\mathrm{X}} = \frac{4}{\mathrm{D}} \cdot \tau_{\mathrm{X}} \tag{2}$$

式(1)と式(2)より付着の基礎微分方程式が次のように導かれる。

$$\frac{d^2Sx}{dx^2} = \frac{4}{Es \cdot D} \cdot \tau x \tag{3}$$

いま,任意の位置 x における rx とSx との 関係が次式で表されるものと仮定する。

$$\tau \mathbf{x} = \mathbf{k}_{\mathbf{b}} \cdot \mathbf{S} \mathbf{x} \tag{4}$$

$$\frac{\mathrm{dSx}}{\mathrm{dx}} = \frac{\sigma_{\mathrm{Sx}}}{\mathrm{Es}} = \alpha \cdot (\mathrm{A}e^{\alpha x} - \mathrm{B}e^{-\alpha x}) \tag{5}$$

$$Sx = Ae^{\alpha x} + Be^{-\alpha x}$$
 (6)

ここに,A,B:未知の積分定数,そして

$$\alpha = \sqrt{\frac{4 \cdot k_{\rm b}}{\rm Es \cdot D}} \tag{7}$$

次に,接合面よりも上側および下側のアン カー筋に対して,それぞれ x = 0の位置を端 部切断位置および折曲げ位置として,以下の境 界条件を仮定する。

$$\mathbf{x} = 0$$
 :  $\boldsymbol{\sigma}_{so} = 0$ ,  $\mathbf{x} = l$  :  $\boldsymbol{\sigma}_{sl} = \boldsymbol{\sigma}_{sl}$  (8)

$$\mathbf{x} = 0$$
 : So  $\approx 0$  ,  $\mathbf{x} = l$  :  $\boldsymbol{\sigma} \mathbf{s} l = \boldsymbol{\sigma} \mathbf{s} l$  (9)

この条件のもとで積分定数 A, B を求めると, 式(8), 式(9)に対してそれぞれ次式を得る。

$$Sx = \frac{1}{2} \sqrt{\frac{D}{\text{Es-kb}}} \frac{e^{\alpha x} - e^{-\alpha x}}{e^{\alpha l} - e^{-\alpha l}} \sigma_{Sl}$$
(10)

$$Sx = \frac{e^{\alpha l} \cdot (e^{\alpha x} - e^{-\alpha x})}{Es \cdot \alpha \cdot (1 + e^{2\alpha l})} \cdot \sigma s l$$
(11)

著者等<sup>2)</sup>は、鉄筋周囲のコンクリートかぶり が大きく割裂ひび割れの発生しない場合の1/3 付着強度時における無次元化付着応力  $\tau$  ni と無 次元化すべり Sni について、位置 X に依存しな い次の実験式を提案している。

$$\tau_{\text{ni}} = \frac{\tau_{\text{x}}}{\sqrt{\text{fc'}}} = \frac{1}{3} \cdot \left\{ 0.51 \cdot \left(\frac{\text{C}}{\text{D}} - 2.5\right) + 1.38 \right\} (12)$$

$$Sni = \frac{Sx}{D} = 0.0035 \frac{C}{D}, \quad C : n : n : (13)$$

式(4), (12), (13)より,初期すべり剛性kb=13.9



N/m<sup>3</sup> (W12) および 15.3 N/m<sup>3</sup> (W16) を得る。

一方,藤井等<sup>3)</sup>は、付着割裂破壊時の r - S 関係の中で kb = 98.1 N/m<sup>3</sup>を提案している。

図-7は、この2つの初期すべり剛性kbを用 い、接合面の上側および下側のアンカー筋の引 張応力度分布を計算し、実験値と比較したもの である。積分定数A、Bの決定に際しては、osl として接合面に最も近い歪みゲージの読みより 実験的に求めた応力度を与えた。実験における アンカー筋の引張応力度分布は、2種類の剛性 kb を用いた計算値の中間にあり、式(12)~(13) で求められるkbを用いることにより、安全側で かつ良好な推定が可能であると考えられる。

## 4.2 重ね鉄筋,中間鉄筋およびコンク リートの応力度分布

接合具締め付け時の重ね鉄筋および中間鉄筋 の圧縮応力度は、両者とも接合面近傍で約 3.5 MPaであり、上側アンカー筋については端部 に、下側アンカー筋については折り曲げ位置に 向かうに従ってほぼ直線的にゼロに近づいた。 一方,接合面上・下部位置でのコンクリート 圧縮応力度の実験値は、鉛直壁前面と背面とで 大きな差は無く、その平均値は約 1.3 MPa で あった。弾性理論による評価を試みたところ、 鉛直壁前面におけるコンクリート圧縮応力度の

これらの応力度の解析的評価については,今 後の検討課題である。

計算値がかなり小さなものになった。

5. ひび割れ発生前の鉛直壁の力学性状

5.1 鉄筋の応力度増分分布

以下では議論を簡明にするため、水平荷重に よる応力度の増分量のみを扱う。本章では、ひ び割れ発生前の荷重 P=50 kN 時を対象とする。

図-8はアンカー筋の引張応力度増分の実験 値と計算値との比較を示している。計算値は, 無ひび割れ断面にアンカー筋のみを配置した場 合と全鉄筋を配置した場合の2つの場合につい て,弾性理論に基づいて求めた。同図より,実 験値は後者の計算値にほぼ一致している。

**図-9**は重ね鉄筋の引張応力度増分の実験値 と計算値との比較を示している。アンカー筋か ら引張応力度が伝達されることによって,接合 面から離れた位置の重ね鉄筋の応力度は計算値 よりも若干危険側になっている。それに対応し て,アンカー筋の応力度の方は,図-8に見ら れるように計算値よりも安全側になっている。

なお,アンカー筋の間に配置した中間鉄筋の 応力度増分については,その大きさ,分布形状 ともに重ね鉄筋とほぼ同じであった。

重ね鉄筋,中間鉄筋ともに接合面で切断され ているにも関わらず,接合面から200mm 程度 の定着域を除外すれば,鉛直壁全体にわたって アンカー筋とほぼ同等の引張力負担をしてお り,効率的な設計法確立の面から注目される。

5.2 コンクリートの応力度増分分布

図-10は鉛直壁前面におけるコンクリート の圧縮応力度増分の実験値と計算値との比較を 示している。鉛直壁上部では両者はほぽ一致し ているが,接合面に近づくにつれて計算値に比 べて実験値は大きな値を示す。接合面から離れ ると実験値は再び計算値に近づく。

### 6. ひび割れ発生後の鉛直壁の力学性状

## 6.1 鉄筋およびコンクリートの応力度 増分分布

本章では、ひび割れ発生後のP=150kN時を 対象として議論を行う。図-11はアンカー筋 の引張応力度増分の実験値と計算値との比較を 示している。計算値は、全鉄筋を配置した無ひ び割れ断面とひび割れ断面の2つの場合につい て、弾性理論に基づき求めた。ポケット部より も上部での実験値は、無ひび割れ断面に対する 計算値と良く一致し、下部に行くに従ってひび 割れ断面に対する計算値に近づく。これは、 3.1のひび割れの発生状況に対応している。



一方,重ね鉄筋および中間鉄筋の引張応力度 増分は,ひび割れ発生前と同様その大きさ,分 布形状ともにアンカー筋とほぼ同じであった。

以上より,アンカー筋は単なる連結材として ではなく主鉄筋として機能すること,接合面で 切断されている重ね鉄筋および中間鉄筋は,接 合面近傍 200 mm 程度の定着域を除外すれば, 近似的に連続鉄筋とした評価が可能であるこ と,その際の応力度算定にはひび割れ断面を用 いると安全側の評価となること,が分かった。

図-12はコンクリートの圧縮応力度増分の 実験値と計算値との比較を示している。鉄筋の 場合と同様に,ポケット部よりも上部での実験 値は無ひび割れ断面の計算値と良く一致し,こ れよりも下部に行くに従ってひび割れ断面の計 算値に近づく。接合面近傍域で局部的に応力度 が大きくなっているのは,接合面ではたわみ角 が不連続な角折れの変形状態となり,応力度が 集中するためである。設計においては,接合面 近傍のコンクリート応力度に対する安全係数を 若干大きめに取る必要があると考えられる。

#### 6.2 変位

いま,鉛直壁基部,接合面およびポケット上 面の3断面におけるアンカー筋のすべりSi(i=1 ~3)を式(10)および式(11)を用いて評価し,こ れを各断面の内力アーム長 zi = di/1.15で除し たものを各断面の回転角 $\theta$ i と近似する。そし て,ひび割れ後の変位 $\delta$ hを,弾性変形量にこの  $\theta$ i による付加変形量を加えた値で評価する。 計算結果を図-6中に▲印の点線で示すが,計 算値は実験値と良く一致した。その際の接合面 のひび割れ幅も,計算値が 0.13mmに対して実 験値が0.15 mmとなり,両者はほぼ一致した。

#### 7. 結論

本報告では,カップラー接合具で連結した P Ca製逆 T型擁壁の曲げ試験を実施した。

得られた結果を以下に要約する。

(1) 鉛直壁基部および接合面の曲げ耐力およ



びせん断耐力の実験値は,土木学会コンク リート標準示方書の規定式より算定される 計算値を上回ることが確認できた。

(2)接合具締め付け時,曲げひび割れ発生前 および発生後における鉄筋およびコンクリ ートの応力度について,安全側の評価を得 るための算定方法について検討した。

#### 参考文献

- 1) 栖原健太郎ほか:鋳鉄製カップラーで接合 したRCはりの力学的性状,コンクリート 工学年次論文報告集, Vol. 20, No. 3, pp. 637-642, 1998
- 2)長友克寛:異形鉄筋とコンクリート間の付着特性とそのモデル化に関する基礎的研究:豊橋技術科学大学学位論文,1994.3
- 3)藤井 栄ほか:割裂付着破壊時の局部付着 応力-すべり曲線,日建築学会大会学術講 演梗概集,pp. 1723 - 1724, 1980.9

-894-