論文 変動軸力を受ける SRC 構造非埋め込み形柱脚の弾塑性性状

貞末和史*1·伊藤倫夫*2·田中秀宣*3·南宏一*4

要旨:兵庫県南部地震によって被害を生じた SRC 構造非埋め込み形柱脚の耐震性能を確認するため、柱脚の断面構成を実験変数として、変動軸力下における実大寸法試験体の曲げせん断実験を行い、引張軸力が柱脚の力学的挙動に大きく影響することが明らかとなった。また、柱脚断面における主筋とアンカーボルトの比率にかかわらず、非埋め込み形柱脚とした SRC 柱部材は変動軸力下においても安定した履歴特性を示し、終局曲げ耐力は既往の累加強度理論に基づく耐力算定式によって安全側に評価できることを確認した。 キーワード:非埋め込み形柱脚、変動軸力、実大実験、終局曲げ耐力、変形性能

1. はじめに

兵庫県南部地震の激烈な地震動によって, SRC 造建物に関しても, 柱脚や継手などの接合 部に多大な被害を生じていることが文献1など の震災調査報告や、その被害分析²⁾によって明 らかにされている。また、柱脚や接合部の破壊 原因として、地震時の転倒曲げに伴う変動軸力 の影響、特に、大きな引張軸力によって生じた と推測される破壊状態が多いことが報告されて いる。しかしながら,非埋め込み形式の SRC 柱 脚に着目した研究では, 圧縮軸力下における曲 げ・せん断実験 3)4)や応力伝達機構に関した研究 5)は行われているものの,引張軸力を受ける柱 脚の挙動について実験的に検討したものは皆無 であった。そこで震災後、引張力を受ける非埋 め込み形柱脚の耐震性能を検討する実験的研究 ()7)8)が行われており、筆者らも基礎的な実験研 究を開始し、その成果の一部を文献9に発表し た。本研究はこの研究成果を踏まえて、引張変 動軸力下における曲げ・せん断実験を実大寸法 の試験体を用いて行い、その力学的性状につい て検討するものである。

2. 実験慨要

2.1 試験体

試験体はSRC構造非埋め込み形柱脚3体とし, 柱脚の終局耐力および変形性能に影響を及ぼす と考えられる主筋とアンカーボルトの数量およ び強度を主要な実験変数として,ベースプレー ト下面位置の断面構成を変化させた実験計画を 立てた。実験計画を表-1,試験体断面を図-1 に示す。NO.1,NO.2 の試験体は耐力と剛性の 大きい鋳鋼製のベースプレートを用い,ナット 回転角法によって初期張力を導入したアンボン ド形式のアンカーボルトを採用している。なお, いずれの試験体においても,アンカーボルトの 引張降伏に先行しベースプレートが曲げ降伏し ないようにベースプレートの厚さを決定した。

実大寸法を想定して各試験体の共通因子は柱
断面 700mm×700mm, コンクリート強度 *Fc*=21N/mm²とし,SRC柱材に内蔵させるH形鋼
を H-400×200(SN490)とする非埋め込み形柱
脚としている。また,帯筋は D16(SD345)を
100mm 間隔で配筋し,柱脚部で曲げ破壊がせん
断破壊に先行するように計画した。なお,全試

- *1 福山大学大学院 工学研究科地域空間工学専攻博士課程 工修(正会員)
- *2 日立金属(株) 若松工場建材技術課 工修
- *3 日立機材(株) テクニカルセンター
- *4 福山大学教授 工学部建築学科 工博(正会員)

-1051 -

	N/Ty	主筋	アンカーボルト	鉄骨	λ		
NO.1		18-D25 (SD345)	4-M42(F值:490N/mm ²)	H-400×200×25×25(SN490)	0.39		
NO.2	0~0.4	22-D25 (SD345)	4-M30(F值:490N/mm ²)	H_{400}	0.21		
NO.3		26-D25 (SD345)	4-M24 (SS400)	H=400×200×10×10(SIN490)	0.07		
註) N:作用軸力, $Ty = aTy + rTy$, $aTy = 0.75 \cdot aA \cdot a \sigma y$, $rTy = rA \cdot r \sigma y$, $\lambda = aTy/Ty$							

表一1 実験計画

験体とも柱脚断面の引張耐力はほぼ等しく,か つ,各試験体の終局曲げ耐力もほぼ等しくなる ように計画しているが,アンカーボルトの引張 耐力 *aTy* (ただし *aTy* はねじ部の引張耐力)と 柱脚断面の引張耐力 *Ty* (ただし *Ty* は柱脚断面 のアンカーボルトの引張耐力 *aTy* と主筋の引張 耐力 *rTy* の和)との比えを変数として計画して いる。試験体の形状を図-2に示し,使用材料の 素材試験結果を表-2,表-3に示す。

2.2 載荷方法

載荷は図-3 に示す載荷装置を使用し,試験 体頂部ピン位置での変位制御によって,漸増正 負繰り返し水平載荷を R=±4.0%rad.まで行った。 なお,軸力は水平正加力時には所定の引張軸力 を導入,水平負加力時には軸力0とする変動軸 力とした。また,軸力の変動は各変位振幅にお いて水平力が0の時点で所定の軸力まで加力あ るいは除荷するものとし,軸力の大きさは R=+1.0%rad.までは0.2×Tyの引張軸力を,それ以 降の変位振幅過程では0.4×Ty としている。

	表 - 2	鋼材(の素材試	験結果	:
\square		降伏点	引張強度	破断伸び	ヤング係数
		σ_y (N/mm ²)	σ_u (N/mm ²)	(%)	E c (kN/mm ²)
	D25	339	540	15.7	168
鉄筋	D16	361	529	17.4	158
	D35	405	596	24.1	198
	M42	490	782	24.7	215
アンカーボ	ルト M30	537	751	26.8	216
-	M24	- 303	431	30.6	214
注)D16およびM42は明瞭な降伏点を示さなかったため02%オフセット強度					

註)D16およびM42は明瞭な降伏点を示さなかったため 0.2%オフセット強度 とした。

表	3	コンク	リー	トの	素材	試験	結果
---	---	-----	----	----	----	----	----

	圧縮強度	割裂強度	材令
	$\sigma c (N/mm^2)$	$\sigma \iota (N/mm^2)$	(日)
柱	24.3	2.24	28
基礎梁	27.0	2.60	28
モルタル	50.0	-	35

3. 実験結果

3.1 弹性性状

図-4に R=±1.0%rad.までの曲げモーメントと 柱脚の変位の関係を示す。水平変位 *d* UB および 回転角 *θ* B は負荷重時の変位も正で表し,軸方 向変位 *d* VB は伸びる方向を正として表している。 引張軸力下における弾性剛性は *l* の大きい試験 体の方がやや高いが,実験変数による差違はほ とんど認められない。しかしながら,軸力の有 無によって柱脚の剛性は大きく異なり,引張軸 力下における剛性の低下は著しい。

図-5 は引張軸力導入時および水平荷重加力 後のベースプレート下面の鋼材のひずみ推移を 示したものである。アンボンドアンカーボルト を使用しているため,軸力導入時から,アンカ ーボルトと主筋の平面保持は成立せず,NO.2 に 関しては,水平荷重加力後,主筋に関しても平 面保持の仮定が成立しないことが認められる。

3.2 破壞性状

図-6に各試験体の最終ひび割れ状況を示す。 いずれの試験体とも柱脚部においての損傷が大 きく, R=0.5~1.0%rad.で主筋が引張降伏し,ア ンカーボルトに関しては R=3.0~4.0%rad. におい て軸部が引張降伏している。また,帯筋・鉄骨の ひずみは弾性状態を保っていることから,柱脚 部においては曲げ破壊が生じたものと思われる。 実験変数によってベースプレート下部の破壊性 状には差違は見られないが,水平荷重加力時に 曲げ圧縮側となる側のコンクリートの破壊状況 は軸力の有無によって異なり,軸力のない場合 の方が損傷は大きい。ベースプレートより上部 のひび割れは、えの小さい試験体の方が多くの せん断ひび割れを生じているが、これは、ベー スプレートより上部の断面においては、主筋量 の増加に伴い、えの小さい試験体の方が曲げに 対する抵抗力が大きくなっていることによるも のと思われる。

図-5 弾性域における鋼材のひずみ推移

3.3 変形性状

図-7 に各試験体の履歴曲線を示す。縦軸は 作用軸力による転倒モーメントを考慮した曲げ モーメント M,横軸は基礎梁固定部に対する柱 頭ピン位置の水平変位*るvc*から求められた柱 頭相対部材角 R をそれぞれ示す。図中の破線は SRC規準¹⁰⁾に示される単純累加式を用いて算定 した各軸力下における柱脚部の終局曲げ耐力を 示し,oMu,o.2Mu,o.4Muは軸力比 N/Ty=0,0.2, 0.4 に対する終局曲げ耐力を表している。NO.2, NO.3 に関しては R=1.0~1.5%rad.において保有 耐力が低下しているのに対して,NO.1 は R=4.0%rad. まで耐力が上昇し続けている。これ は,図-8 に示す鋼材のひずみと柱頭部材角の 関係からわかるように,いずれの試験体ともア ンカーボルトが大変形に至るまで降伏しておら ず,特に,NO.1 はアンカーボルトの負担量が大 きいためにこのような状況が見られたものと思 われる。しかしながら,いずれの試験体とも *R*=4.0%rad.まで急激な耐力低下はなく,ほぼ紡錘 形の安定した履歴特性を示している。

図-9 に柱脚の変位と柱頭相対部材角の関係 を示す。引張軸力を受けている時は柱頭相対部 材角の進行に伴う柱脚の変位の進展が大きいが 実験変数 んによる柱脚の変形性状の差違は小さ い。また,水平変位,軸方向変位に関しては主 筋の降伏以後,急激に変位が増加することが認 められることから,主筋が柱脚の水平および軸 方向の変形に,アンカーボルトが柱脚の回転変 形に大きく影響しているものと考えられる。

図-8 鋼材のひずみ-柱頭相対部材角関係

図-9 柱脚の変位-柱頭相対部材角関係

4. 終局曲げ耐力の検討

柱脚の終局曲げ耐力を文献 11 に示される平 面保持の仮定を用いた終局強度理論に基づいて 算定する。鋼材の応力度-ひずみ度関係は完全 弾塑性型とし、コンクリートについては、弾塑 性部分を2次のパラボラ、塑性部分は下降直線 となるものを考え、コンクリートの圧縮応力が 最大値に達する時のひずみ度 c E # は 0.15%, 圧 壊する時のひずみ度 c E v を 0.30%としている。以 上の仮定を用いて得られた柱脚断面の曲げモー メントー曲率関係を図-10 に示す。NO.1, NO.2 では、まず主筋が降伏し、その後アンカーボル トの降伏によって剛性は低下するが、NO.3 では アンカーボルトが先に降伏し、それとほぼ同時 に主筋が降伏、その後、曲げモーメントは穏や かに上昇し剛性は低下する。しかしながら、実 験では図-7 に示すようにいずれの試験体とも アンカーボルトは大変形時まで降伏していない。 これは、図-11 に示すベースプレート下面の鋼 材のひずみ推移より、主筋とアンカーボルトに 対して平面保持が成立していないことに起因す ると思われる。

図-11 繰り返し荷重を受けた後の鋼材のひずみ推移

図-12 は縦軸を作用軸力 N,横軸を終局曲げ モーメント M としたベースプレート下面位置 の M-N 相関曲線を示す。図に示す耐力線は平 面保持を仮定した終局強度理論による耐力線お よび, SRC 規準に示される累加強度理論を用い て算定した耐力線を表している。なお,主筋, アンカーボルトおよび累加強度の算定には鋼材 の降伏点を用いている。また,いずれの試験体も 最大耐力に達していないため,実験値としては, R=±1.0%rad.(〇印)および R=±4.0%rad.(●印)に おける曲げモーメントをそれぞれ示している。 なお,終局強度理論では終局耐力時に鋼材が降 伏していない場合を考慮しているため,高圧縮 軸力下において累加強度と終局強度の差が大き くなっている。

実験値と解析値を比較すると、引張軸力を受けている R=+4.0%rad.の実験値は理論値を大きく上回っていることが認められる。これは、図-9 に示されるように引張軸力下においては柱脚の変位が大きく、R=±4.0%rad.での振幅においては、軸力が0の場合は主筋のひずみが20×10⁻³であるのに対して、引張軸力下においては30×10⁻³に達しており、この値は材料試験で得られた鋼材のひずみ硬化の域に達しているため耐力が解析値を上回っているものと思われる。

5. まとめ

柱脚引張降伏軸力の 0~40%の変動軸力下に おいてんを実験変数とした実大寸法試験体によ る曲げ・せん断実験を行い,以下の結論を得た。

- 1)終局曲げ耐力は累加強度理論によって安全側
 に評価することが可能であり,部材角
 R=4.0%rad.まで十分な変形能力を有する。
- 2)実験変数んによって終局耐力および履歴特性 に差違はみられないが、引張軸力の有無によ り柱脚部の鉛直、水平および回転の変形性状 に差違が生じることが認められる。

参考文献

- 1) 阪神・淡路大震災調査報告編集委員会:「阪神・淡路大 震災調査報告 建築編-2」,1998.8
- 2)称原良ー・南宏一:兵庫県南部地震におけるSRC造 柱脚部の被害,第10回日本地震工学シンポジウム, Vol.1, pp.355-358, 1998.11
- 3) 増田貫志:鉄骨鉄筋コンクリート柱脚部の力学性状 に関する実験的研究(その1),日本建築学会論文報告 集,第260号,pp.59~68,1979.2
- 4) 仲威雄・森田耕次・立花正彦:鉄骨鉄筋コンクリート柱脚の耐力と履歴特性に関する実験的研究,日本 建築学会論文報告集,第276号,pp.43-50,1977.10
- 5) 西村泰志・南宏一・若林實:鉄骨鉄筋コンクリート 柱脚部の応力伝達機構,構造工学論文集, Vol.32B, pp.147-158, 1986.3
- 6) 増田貫志・九谷和秀・城芦利仁:鉄骨鉄筋コンクリ ート柱脚の力学性状に関する実験的研究,日本建築 学会大会学術講演梗概集,pp.1101-1102, 1997.9
- 7) 称原良一・中澤春生:非埋込型柱脚による SRC 柱の 耐震性能に関する実験(その1,2),日本建築学会大会 学術講演梗概集,pp.1319-1322,1998.9
- 8)谷田部敏之・立花正彦:引張軸力下における非埋込型 SRC 柱脚の力学的特性に関する実験的研究,コンクリート工学年次論文報告集, Vol.21, No.3, pp.1039-1044, 1999.6
- 9) 貞末和史ほか:SRC構造非埋め込み形柱脚の終局耐力と変形性能、コンクリート工学年次論文報告集、 Vol.21, No.3, pp.1045 - 1050, 1999.6
- 10) 鉄骨鉄筋コンクリート構造計算規準・同解説(第4 版),日本建築学会,pp.148-151,1987.6
- 11)建築構造学体系 19 鉄骨鉄筋コンクリート構造, pp.32-54, 1975.10

-1056-