論文 2 軸偏心圧縮を受ける SRC 長柱の耐力および弾塑性性状に 関する実験

柴田 道生*1

要旨:SRC長柱の2軸偏心圧縮実験を行った.試験体は12cm×12cmの断面内に溶接H形 鋼 H-62×60×6×6と4本の丸鋼主筋9¢および丸鋼フープ3¢を配し,部材断面弱軸より22.5, 45,67.5度回転した軸まわりに、2種類の偏心量を与えた偏心圧縮実験を、4種類の材長に ついて行った.最大荷重に到るまでの荷重-変位関係は、数値解析結果と良好な対応を示 した.また、最大耐力は文献5)の手法により精度良く予測することができた.弾塑性変形 性状および最大耐力に関し載荷角度の影響は大きくない.終局状態ではコンクリートの劣 化が卓越し、中央断面は全塑性状態に達することはない.

キーワード: SRC 長柱, 2 軸曲げ, 偏心圧縮実験, 耐力, 数値解析

1. はじめに

2 軸曲げを受ける SRC 長柱の実験的研究は, 偏心圧縮実験として Virdi・Dowling¹⁾, 松井・森 野他²⁾, 一定軸力のもとで材端モーメントを変動 させる Johnson・May³⁾の研究など数少ない. この 種の実験では材端で回転自由の支持条件を与え 得るかが重要なポイントとなる. 全方向に完全 な回転自由を実現しようとすれば, 油圧球座²⁾ や交叉ナイフエッジ³⁾といった大がかりな材端支 持装置を用いねばならない.

本研究では,動作原理の明確なかまぼこ球座 を用いた SRC 長柱の2軸偏心圧縮実験を行い, 合理的な設計式を得るための基礎資料を得る.

2. 実験

2.1 試験体

試験体の概要を表 1, 図 1 に示す.4 種類の材 長,2種類の偏心量および3種類の載荷角度(部 材断面弱軸とかまぼこ球座の回転軸のなす角 度) $\phi = 22.5^{\circ}, 45^{\circ}, 67.5^{\circ}$ の組み合わせについて 計 32体の偏心圧縮実験を行った.表中の N_o は 降伏軸力, M_{xo}, M_{yo} は弱軸および強軸まわりの 基準曲げ強度(中立軸が断面中心を通るときの 全塑性モーメント)であり,無次元化細長比 $\Lambda =$ $\sqrt{N_o/N_E}$ は部材の降伏軸力と弾性座屈荷重 N_E の比から算定する.鉄骨は板厚6 mmの鋼板 を溶接して製作し,焼鈍を行った.主筋および フープはそれぞれ径9mm,3mmの丸鋼を用いた. 使用鋼材の材料試験結果を**表2**に示す.

コンクリートの調合は表3を基準とし、細骨 材の表面水量に応じて水と細骨材量を補正した. コンクリート打設は横打ちとし、屋外で打設後2 ~3日間シートを被せ、脱型した後5~9週間標 準水中養生し、その後空中養生とした.実験時 の材令は92~140日であり、平均強度は36.6MPa, 標準偏差は1.5MPa (4%)であった.

2.2 載荷・測定システムと中心合わせ

載荷・測定システムの概要を図2に示す.所 定の載荷角度で設置されたかまぼこ球座を介し て長柱試験機に設置し,約30tの圧縮力をかけ た状態で部材中央の横たわみが最小となるよう に上下端の材端移動装置を調整する.その状態 を基準とし、基準状態から材端移動装置を操作 して所定の偏心量を与えた.

変形の方向が確定しない 2 軸偏心圧縮試験で のかまぼこ球座は境界条件として厳密ではなく, 試験体のx, y 軸まわりの曲げ剛性が異なる場合

*1 摂南大学教授 工学部建築学科 工博(正会員)

	(u)		φ	, cys c.		, <i>-y</i> ,			
	$F_{\mathcal{C}}(MPa)$	N _o (kN)	<i>M_{xo}</i> (kNm)	<i>M_{yo}</i> (kNm)	Λ	$P_{\chi}(kN)$	μ	n	m
A04-1	32.4	796	12.57	16.26	0.182	838	0.570	1.053	0.600
A04-2	33.9	817	12.91	16.57	0.182	425	1.709	0.520	0.889
A08-1	36.6	854	13.45	17.15	0.367	653	0.572	0.764	0.437
A08-2	36.4	851	13.46	17.13	0.365	364	1.706	0.428	0.729
A12-1	36.0	849	13.37	17.12	0.548	636	0.571	0.750	0.428
A12-2	35.6	842	13.28	16.97	0.548	295	1.712	0.350	0.600
A18-1	37.1	856	13.53	17.16	0.824	399	0.569	0.466	0.265
A18-2	36.4	851	13.47	17.14	0.821	206	1.706	0.243	0.414

表1 試験体概要 (a) A シリーズ $\phi = 22.5^{\circ}$, $\sigma_{ve} = 327$ (MPa), $\sigma_{vr} = 315$ (MPa)

				<i>.</i>
(b)	Β シリーズ	$\phi = 45^{\circ}$,	$\sigma_{ys} = 311 (\text{MPa})$,	$\sigma_{yr} = 326 (\text{MPa})$

	F _C (MPa)	N _o (kN)	<i>M_{xo}</i> (kNm)	<i>M_{yo}</i> (kNm)	Λ	$P_{X}(kN)$	μ	n	m
B04-0	37.6	875	14.02	17.69	0.181	946	0	1.081	0
B04-1a	37.6	869	13.93	17.50	0.181	727	0.561	0.836	0.424
B04-1b	37.6	870	13.91	17.54	0.181	704	0.563	0.809	0.411
B04-2	37.6	863	13.83	17.36	0.181	412	1.654	0.477	0.713
B08-0	35.8	841	13.50	16.99	0.360	816	0	0.971	0
B08-1a	32.8	804	12.92	16.52	0.358	613	0.561	0.763	0.384
B08-1b	38.0	873	13.99	17.57	0.363	369	0.562	0.685	0.348
B08-2	37.6	867	13.92	17.44	0.362	369	1.683	0.426	0.648
B12-0	36.3	845	13.54	17.11	0.543	788	0	0.932	0
B12-1a	37.3	861	13.80	17.33	0.543	587	0.562	0.682	0.346
B12-1b	36.3	843	13.50	17.04	0.543	551	0.562	0.653	0.331
B12-2	37.3	861	13.81	17.33	0.542	295	1.683	0.343	0.522
B18-0	37.6	866	13.87	17.40	0.816	641	0	0.74	0
B18-1a	32.8	799	12.84	16.36	0.805	416	0.560	0.520	0.262
B18-1b	38.0	868	13.89	17.43	0.818	394	0.562	0.454	0.231
B18-2	35.8	837	13.41	16.91	0.814	229	1.685	0.273	0.416

(c) $C \ge \mathcal{Y} - \mathcal{X} \quad \phi = 67.5^{\circ}, \ \sigma_{ys} = 327 \text{ (MPa)}, \ \sigma_{yr} = 315 \text{ (MPa)}$

	F _c (MPa)	N _o (kN)	<i>M_{xo}</i> (kNm)	Myo(kNm)	Λ	$P_{X}(kN)$	μ	n	m
C04-1	38.5	879	13.89	17.45	0.184	738	0.569	0.840	0.478
C04-2	38.1	8 76	13.84	17.49	0.183	447	1.710	0.510	0.871
C08-1	35.3	834	13.12	16.71	0.366	671	0.572	0.804	0.460
C08-2	37.8	867	13.68	17.31	0.367	435	1.710	0.502	0.859
C12-1	36.8	859	13.57	17.23	0.548	594	0.570	0.692	0.394
C12-2	36.0	852	13.45	17.23	0.549	379	1.710	0.446	0.762
C18-1	35.8	839	13.26	16.94	0.822	486	0.569	0.579	0.330
C18-2	40.0	896	14.17	17.36	0.828	250	1.706	0.279	0.476

 F_c : コンクリート強度, σ_{ys} : 鉄骨降伏応力, σ_{yr} : 鉄筋降伏応力

 N_o :降伏軸力, M_{xo}, M_{yo} :弱,強軸まわり基準曲げ強度, $A\left(=\sqrt{N_o/N_E}\right)$:規準化細長比

 N_E : 弹性座屈荷重, P_x : 実験耐力, $\mu = N_o e/M_{xo}$: 偏心率, $n = P_x/N_o$, $m = P_x e/M_{xo}$

図1 試験体

表2 鋼材の引張試験結果

			100 C 0 0 00 00			
	A,C シ	A,C シリーズ		Bシリーズ		
	鉄骨	主筋	鉄骨	主筋)=)	
降伏応力 (t/cm ²)	3.34	3.21	3.17	3.33	2.57	
引張強度 (t/cm ²)	4.79	4.63	4.77	4.67	3.07	
伸び率(%)	28.5	31.5	26.3	23.7	36.7	

表 3 コンクリートの調合(1 m³ 当たり)

水セメント比	水	セメント	砂	砂利	AE 剤
70 %	215 kg	307 kg	863 kg	830 kg	3.07 ℓ

は誤差を伴う可能性がある.しかし、本実験ではx,y軸まわりの 曲げ剛性の差は10%程度であり、大きな影響はないと判断した.

部材端を支点とする測定フレームに設置した2個の1 cm スト ロークの変位計により材軸方向変位を、5 cm もしくは 10 cm スト ロークの変位計により部材中央の横たわみを測定した.

3. 実験結果と考察

3.1 最大荷重および荷重一横たわみ関係

実験で得られた最大荷重を表 1 中に実験耐力 P_x として示す.また,実験で得た荷重と中央点 横たわみの関係を図 3 中に実線で示す.図の両 軸はそれぞれ部材の降伏軸力 N_o および材長Lで 無次元化されており,図中の破線および鎖線は 解析結果である.解析では,中央点のたわみを 順次増大させながら,差分近似に基づく非線形 連立方程式を解いて釣り合い系を求める作業を 繰り返す.境界条件は,構面外変形については 材端ピン,構面内変形は解析 1 において材端ピ ン,解析 2 では材端固定とした.解析 1 は両材 端を完全なピン支持とした場合,解析 2 は材端 を偏心方向にのみ回転する一方向ヒンジとした 場合に相当する.

2 種類の解析結果は最大耐力に達するまでは ほとんど差がみられないが,最大耐力以降の挙

図2 載荷・測定システム

動に両解析にわずかな差が生じ,載荷角度¢が大 きい場合に影響が大きい.初期剛性は,実験値 と解析結果は良く一致している.原点付近のド リフトは,変位測定フレームを直接供試体に取 り付けることができず,球座装置に取り付けた ので,試験体端部が球座に密着するまでのずれ が記録されたためと考えられる.

全体として最大耐力に至るまでの挙動に関し ては,解析結果は実験値と良く対応している. 実験値は最大耐力に達した以後急激に耐力が低 下するが,解析では被りコンクリートの材料劣 化等が考慮されないため,最大耐力以降の耐力

低下は実験値に比べると緩やかである.この傾向は細長比が小さい場合に著しく,*L/D* = 18の場合は,最大耐力を過ぎてもなおしばらくの間は実験値と解析の対応はよい.これらの傾向は載荷角度にほとんど依存しない.

試験体A041の最大耐力は解析結果に比べていかにも大きいが、その原因は不明である.

3.2 荷重ー中央点曲げモーメント関係

図 5 は中央断面での曲げモーメントと荷重の 関係を,文献 4)での弱軸曲げ偏心圧縮実験結果 とともに示す.縦軸は降伏軸力,横軸は基準弱 軸曲げ強度で無次元化されており,実線は実験

-1060 -

-1061 -

軸曲げ全塑性理論解(累加強度理論),1点鎖線 は文献は実験で得られた最大耐力時の材端モー 5) 載荷角度が 45 度以下であれば,長柱の2軸 メントと軸力の関係を示す.解析1と解析2の 差異は $\phi \leq 45^{\circ}$ ではわずかであるが、 $\phi = 67.5^{\circ}$ で は顕著となり、大変形域で解析 2 は弱軸曲げ全 6) N-M相関関係はは文献 5)の手法により精度 塑性理論解を上回る. $\phi = 67.5^{\circ}$ では実験値は解析 2の結果に近い傾向を示す. L/D=4~12の場合, 解析では被りコンクリートの剥落による材料劣 化が考慮されていないため、最大耐力に達した 以降は累加強度理論解に漸近していくが、実験 値は最大耐力に達した直後から急激に完全塑性 理論曲線の内側に進み、中央断面の応力は全塑 性状態に達し得ない. L/D = 18 の場合実験値は 最大耐力に達した後もしばらくは解析結果と同 様の経過を示すが、その後材料劣化に伴う耐力 低下が始まる.

3.3 N-M 相関曲線

図 6 は最大耐力時の材端モーメントと軸力の 関係を示す. 両軸の無次元化基準は図5 と同様 である.●,◆印などは実験値,実線は文献 5) 2) 松井千秋・森野捷輔 他:2 軸偏心圧縮を受け の手法で得られた相関曲線、細点線は完全塑性 理論解である. A04-1 を除き, 実験値は解析結果 と良好な対応を示す.

4. 結論

SRC 長柱の2軸偏心偏心圧縮実験を行い,数 値解析結果および文献 5)の手法による解析と比 較した結果,以下の結論を得た.

- 1) 細長比の小さい偏心圧縮柱ではコンクリー トの圧壊・劣化が早期に発生するので、劣化 性状を考慮しない解析では耐力を過大評価す る可能性がある.
- 2) 細長比が中程度以上であれば、コンクリート の圧壊・劣化が始まる以前に安定限界に達す 4) 柴田道生:H 形鋼を用いた SRC 長柱の弱軸ま るので、最大耐力に関してはコンクリートの 圧壊・劣化を考慮する必要はない.
- 3) 細長比が中程度以上であっても,最大耐力に 達した直後からコンクリートの圧壊・劣化が 5) 柴田道生:2 軸曲げを受ける SRC 長柱の耐力, 卓越するので、中央断面は全塑性状態に達す ることはない.

- 値,破線は解析1,細実線は解析2,細点線は弱 4) 弾塑性変形性状および最大耐力に関し,載荷 角度の影響は少ない.
 - 偏心圧縮実験にかまぼこ球座を用いても致命 的な誤差は生じない.
 - 良く予測することができる.

謝辞

コンクリートの打設に関して便宜を賜ったタ イコー(㈱ 藤木英晴氏,および実験に協力して いただいた入澤 亨,山本泰成(以上,摂南大 学大学院), 久木田真一(神戸大学大学院)の 各氏に厚く感謝します.

参考文献

- 1) Virdi, K.S. and Dowling, P.J : The Ultimate Strength of Composite Columns in Biaxial Bending, Proceedings Inst. Civil Engrs., Vol. 55, Part 2, pp.251-272, 1973.03.
- る SRC 長柱の弾塑性性状に関する研究(その 1),日本建築学会大会学術講演梗概集(構造 系), pp.1627-1628, 1979.9. (その 2), 日 本建築学会大会学術講演梗概集(構造系), pp.1887-1888, 1980.9. (その 4), 日本建築 学会大会学術講演梗概集(構造系), pp.2257-2258, 1981.10. 森野捷輔:構造部材および骨組の弾塑性不安

定現象に関する研究, 京都大学学位論文, 1994.07.

- 3) Johnson, R.P. and May, I.M. : Tests on Restrained Composite Columns, The Structural Engineer, Vol. 56B, No. 2, pp.21-28, 1978.06.
- わり曲げ座屈耐力に関する実験的研究、コン クリート工学年次論文報告集, V01.19, No.2, pp.1485-1490, 1997.
- 日本建築学会構造系論文集, No.519, pp.135-141, 1999.05.

-1062 -