# 論文 RM 増設壁の接合部に用いる割裂補強筋の効果に関する実験的 研究

石本麗\*1·今西達也\*2·安居功二\*3

要旨:RC造建築物の耐震補強を行う場合に、型枠と構造体を兼ねた型枠状メーソンリー ユニットを使用して耐震壁や袖壁を増設する構法の既存躯体とRM組積体の接合部の性 能を確認するため、アンカー筋および割裂補強筋の形状の違いに着目し、押し抜きせん断 実験を行った。実験の結果、割裂補強筋の形状の違いは、接合部のせん断強度には影響を 与えないが、大変形時の変形性状に影響を与えることがわかった。また、本構法の接合部 強度には耐震改修指針のアンカーせん断耐力式が適用できることを示した。 キーワード:耐震補強、補強組積造、割裂補強筋、押し抜きせん断実験

1. はじめに

RC造建築物の耐震補強方法の一つとして, RC壁の増設による補強方法がある。この構法 では型枠の組立や解体に伴う搬入や作業が発生 し,多種類の工事が必要となる。そこで,施工 性向上のため,型枠と構造体を兼ね,手で持ち 運べ,RC造に比べて手間のかからないRMユ ニット<sup>1)</sup>を用いたRM壁増設構法を検討してい る。

既存の建物に新たに壁を増設して耐震改修を 行い,増設部材が性能を十分に発揮するために は,接合部が充分な強度を保有している必要が ある。そこで,既存RC部材とRM組積体の接 合部の強度や性状を明らかにするため,押し抜 きせん断実験を行った。

2. 試験概要

#### 2.1 試験体

図-1に代表的な試験体の形状および寸法を 示し,表-1に試験体の一覧を示す。A型試験 体は既存柱と増設壁部分,C型試験体は既存梁 と増設壁部分の接合部をそれぞれモデル化した ものである。試験体はA型11体,C型11体の



- \*1 (株) 松村組建築本部設計管理部西日本設計部構造設計課 (正会員) \*2 (株) 松村組技術研究所構造第2研究課 博士(工学) (正会員)
- \*3 (株) 松村組技術研究所構造第2研究課課長 (正会員)

計 22 体で,割裂補強筋の有無・形状(鉄筋径, 形状,方向)と,アンカー筋の径と施工方法(通 し配筋とあと施工アンカー),接合部の目荒らし の有無を実験変数とした。試験体名の最初のア ルファベットは試験体形状,次の2桁の数字は アンカー筋の径,次のCは目荒らし有り,Sは 割裂補強筋あり,次の2桁の数字またはSPは アンカー筋形状と径(数字ならはしご筋径,S Pならスパイラル筋),最後のアルファベットは はしご筋の方向(壁厚方向に対してHなら平行, Vなら垂直)を示す。

「既存鉄筋コンクリート建築物の耐震改修設 計指針・同解説<sup>2)</sup>」(以下「改修指針」)では, 壁増設によって耐震改修を行う場合,スパイラ ル筋やはしご筋の二段配筋,もしくはフープ筋 によって既存躯体との接合部を補強することと している。しかし,この場合施工が煩雑になる。

そこで,改修指針の接合部詳細を本構法に適 用した場合の接合部の強度確認と,有効な割裂 補強が可能で,より施工性の高い補強方法を検 討するため,接合部の割裂補強筋をはしご筋一 段とした場合の接合部のせん断耐力および変形 性状について検討を行う。

割裂補強筋としてはしご筋が挿入されている 試験体では,接合部の断面積あたりの鉄筋量が ほぼ等しくなるように割裂補強筋の径を決定し た。表-1には「中層RM構造設計指針(案)・ 同解説<sup>1)</sup>」(以下「RM指針」)の方法で算定し た割裂補強筋比 psを合わせて示す。

既存躯体部分は両タイプとも共通で,主筋が 4-D16,補強筋がD10@100とした。目荒らしは, 既存躯体部分の接合部コンクリート表面をハン マーで叩き,3mm 程度の凹凸面とした。

使用した材料の材料特性を表-2,表-3に 示す。実験は2度に渡って行ったため,それぞ れの実験シリーズごとの材料特性を示している。 また,RM増設壁部分の圧縮強度を確認するた め,RMユニット,目地モルタルおよびグラウ ト材で構成される角柱状試験体の一軸圧縮試験 (プリズム試験)を行った。プリズム試験の結

| シリ                                                                                                 | 試験体名     | 形状         | アンカー筋 |      | 日哲にし | 割裂補強筋    |       |                    |
|----------------------------------------------------------------------------------------------------|----------|------------|-------|------|------|----------|-------|--------------------|
| ーズ                                                                                                 |          |            | 径     | あと施工 | 日元らし | 形状,配置*   | 径     | p <sub>s</sub> (%) |
| Ι                                                                                                  | A19CS06H | 既存柱─増設壁    | D19   |      | 有    | はしご筋,平行  | 2-D6  | 0.604              |
|                                                                                                    | A19C     |            |       |      |      |          |       | _                  |
|                                                                                                    | A19S06H  |            |       |      | 無    | はしご筋,平行  | 2-D6  | 0.604              |
|                                                                                                    | A19CS10H |            |       |      | 有    | はしご筋,平行  | 1-D10 |                    |
| П                                                                                                  | A16CS06H |            | D16   |      | 有    | はしご筋、平行  | 2-D6  | 0.604              |
|                                                                                                    | A16C     |            |       |      |      | —        |       |                    |
|                                                                                                    | A16CS10H |            |       |      |      | はしご筋、平行  | 1-D10 | 0.670              |
|                                                                                                    | A16CS10V | Â          |       |      |      | はしご筋,垂直  | 1-D10 | **                 |
|                                                                                                    | A13CS06H | 型          | D13   |      | 有    | はしご筋, 平行 | 2-D6  | 0.604              |
| Ι                                                                                                  | A13C     |            |       |      |      |          | —     | —                  |
|                                                                                                    | A13S06H  |            |       |      | 無    | はしご筋,平行  | 2-D6  | 0.604              |
|                                                                                                    | C19CS10H | 既存         | D19   |      | 有    | はしご筋、平行  | 1-D10 | 0.772              |
|                                                                                                    | C16CS06H |            | D16   |      | 有    | はしご筋、平行  | 2-D6  | 0.696              |
| Π                                                                                                  | C16C     |            |       |      |      | _        | —     |                    |
|                                                                                                    | C16CS10H | 梁          |       |      |      | はしご筋,平行  | 1-D10 | 0.772              |
|                                                                                                    | C16CS10V | 増          |       |      |      | はしご筋, 垂直 | 1-D10 | **                 |
|                                                                                                    | C13CSSP  | 設壁<br>(C型) | D13   |      |      | スパイラル    | D10   | 2.34               |
| Ι                                                                                                  | C13C     |            |       |      | 有    | _        |       |                    |
|                                                                                                    | C13ACSSP |            |       | 0    |      | スパイラル    | D10   | 2.34               |
|                                                                                                    | C10CSSP  |            | D10   |      | 有    | スパイラル    | D10   | 2.34               |
|                                                                                                    | C10C     |            |       |      |      |          |       |                    |
|                                                                                                    | C10ASSSP |            |       | 0    |      | スパイラル    | D10   | 2.34               |
| 割裂補強筋比:p <sub>s</sub> =a <sub>/</sub> (h'×Xs) Xs:割裂補強筋のピッチ,a <sub>s</sub> :一組の補強筋の断面積,h':圧入モルタルのせい |          |            |       |      |      |          |       |                    |

表-1 試験体一覧

おは本価1年初に: p,=a/(n へAS) AS: おる(細独的のビッナ, a,: 一祖の偶強的の断面積, h': 上人セルタルのせい \*割裂補強筋配置は壁厚さ方向に対する方向(平行, 垂直)で示す。 \*\*指針では割裂補強筋は壁厚さ方向に平行なものを指すため, 配置 V タイプのものでは計算できない。

| シリー<br>ズ | 部位     | 圧縮強度<br>(N/mm <sup>2</sup> ) | ヤング係数<br>(N/mm <sup>2</sup> ) |
|----------|--------|------------------------------|-------------------------------|
|          | 既存躯体   | 25.5                         | $2.48 \times 10^{4}$          |
| Ι        | 增設部分   | 31.2                         | $2.60 \times 10^{4}$          |
|          | 目地モルタル | 42.1                         |                               |
|          | 既存躯体   | 29.2                         | 2.49×10 <sup>4</sup>          |
| Π        | 增設部分   | 23.9                         | $2.40 \times 10^{4}$          |
|          | 目地モルタル | 36.8                         | <u> </u>                      |

表-2 コンクリートの材料特性

| 表-3 鉄筋の材料特性(単位:N/mm <sup>2</sup> ) |     |       |       |  |  |
|------------------------------------|-----|-------|-------|--|--|
| シリー<br>ズ                           | 径   | 降伏強度  | 引張強度  |  |  |
|                                    | D6  | 387.6 | 588.6 |  |  |
| Γ T                                | D10 | 367.5 | 543.0 |  |  |
|                                    | D16 | 357.0 | 494.2 |  |  |
|                                    | D19 | 373.6 | 491.1 |  |  |
|                                    | D6  | 382.5 | 520.7 |  |  |
| п                                  | D10 | 329.4 | 507.8 |  |  |
| Ш                                  | D16 | 345.6 | 501.4 |  |  |
|                                    | D19 | 401.9 | 603.7 |  |  |

表-4 プリズム試験結果(単位:N/mm<sup>2</sup>)

| 1                                                                                                                                                                                                                                                                                           |     | > > · · · · · · · · · · · · · | ~~~~ ~ | 1 (444 1 1 1 |              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------|--------|--------------|--------------|--|
| シリーズ                                                                                                                                                                                                                                                                                        | No. | プリズム<br>強度                    | 平均値    | 計算値          | ヤング<br>係数    |  |
|                                                                                                                                                                                                                                                                                             | 1   | 24.30                         |        | 21.90        | 1.95×<br>10⁴ |  |
| I                                                                                                                                                                                                                                                                                           | 2   | 23.60                         | 24.83  |              |              |  |
|                                                                                                                                                                                                                                                                                             | 3   | 26.60                         |        |              |              |  |
| Π                                                                                                                                                                                                                                                                                           | 1   | 21.94                         | 22.31  | 20.82        | 1.85×        |  |
|                                                                                                                                                                                                                                                                                             | 2   | 22.68                         | 22.31  |              | 104          |  |
| プリズム強度: F <sub>m</sub> =e <sub>s</sub> {(1-β')F <sub>u</sub> +β'F <sub>g</sub> }<br>F <sub>u</sub> :R M組積体のプリズム強度(35)<br>F <sub>g</sub> :グラウト材の設計基準強度<br>β':R Mユニットの空洞比(0.65)<br>e <sub>s</sub> :組積係数(0.75)<br>ヤング係数は以下の方法で算定した。<br>Em=1.68×10 <sup>5</sup> √(Fm/180)<br>プリズム強度は実験値の平均値とした。 |     |                               |        |              |              |  |

果を表-4に示す。表-4には、RM指針の設 計式によって算定したRM組積体のプリズム強 度とヤング係数も合わせて示す。

#### 2.2 実験方法

実験は 4000kN 万能試験機を用い,一方向単 調載荷とした。試験体には,あと施工したRM 組積体下側に支点を設け(図-1の△),既存躯 体部分の上部の加力点(図-1の▼)から荷重 を加えた。変位は既存躯体部分の鉛直変位を計 測した値を用いた。アンカー筋のRM組積体内 部の接合部近傍と片側の割裂補強筋にひずみゲ ージを貼り,ひずみを計測した。 3. 実験結果

### 3.1 荷重一鉛直変位関係

A型試験体のアンカー筋径が D16 で,割裂補 強筋の形状が異なる4体の試験体の荷重-鉛直 変位関係を図-2に示す。図-3は図-2の変 位が 3mm 以下での拡大図である。図-2,図 -3より,変位が小さいときには割裂補強筋の 形状の違いによる差異は見られない。しかし, 変位がおよそ 20mm 以上となると,割裂補強筋 の違いによって荷重-変位関係に違いが生じて いることがわかる。

割裂補強筋のない A16C 試験体と,割裂補強 筋を壁厚方向に垂直に入れた A16CS10V 試験体 は、変位が 20mm を越えたあたりで荷重が低下 した。一方,割裂補強筋を壁厚方向に平行に入 れた A16CS06H, A16CS10H 試験体ははしご筋 を一段とした場合にも二段とした場合と同様に、 変位が増加すると荷重が増加し,初めの荷重ピ ーク時よりも高い荷重を示した(図-3)。

C型試験体でのアンカー筋径が D16 で,割裂 補強筋の形状が異なる4体の試験体の荷重-鉛 直変位関係を図-4に示す。A型試験体と同様 に,割裂補強筋のない試験体や割裂補強筋を壁 厚に垂直に配置した試験体には変位が進むに従 って荷重の低下が見られる。

試験体形状がA型で割裂補強筋が共通(はし ご筋 D6×2)で,アンカー筋の径が D19, D16, D13の A19CS06H, A16CS06H, A13CS06H 試験 体の荷重-鉛直変位関係を図-5に示す。アン カー筋の径が異なる場合も荷重-鉛直変位関係 は同じような形状を示している。また,アンカ 一筋の径が大きいほど,荷重が大きくなる傾向 が見受けられる。

なお、図-2、図-3、図-4、図-5には 以下に示す式(1)~式(3)による計算値を併せて 示した。

・せん断摩擦理論式3)

 $\tau_u = p_v \times \sigma_y \times tan \Phi \tag{1}$ 

ここで $p_v$ :アンカー筋比

(アンカー筋断面積/せん断面断面積)





なお,式(2),式(3)ではコンクリートの圧縮強 度とヤング係数には,既存躯体部とコンクリー ト強度と増設壁部のプリズム強度のうち強度が 低い方の値を採用した。

## 3.2 接合耐力

A16CS06H, A16CS10H 試験体の鉛直変位-アンカー筋ひずみを図-6に示す。アンカー筋 ひずみは, アンカー筋の上下に貼ったひずみゲ ージの平均値である。

アンカー筋には変位が進むと引張ひずみが生



図-7 接合部模式図

じているが、ある時点で変位が進んでいるのに ひずみが増加しなくなる点(図-6中の〇)、あ るいは圧縮ひずみに転じ始める点(図-6中の □)が見受けられた。これは、既存躯体と増設 壁の接合部間で凹凸のあるコンクリートの凸頂 部で支圧破壊が生じたり、凸頂部を越えて接合 部でのひび割れ幅の広がりが増加しない点だと 考えられる(図-7参照)。そこでこの点までを 弾性と見なせる点とし、実際の設計に採用する 強度はこれ以前の強度とした。以降は上記の定 義に基づき、各試験体の接合耐力を求めた。先 に示した図-3、図-5にはアンカー筋ひずみ より求めた最大荷重(■)をプロットしている。

全試験体の最大荷重を縦軸に,式(1),式(3) により求めた計算値を横軸に取ったグラフを図 -8,図-9に示す。



(耐震改修指針アンカー式との比較)

図-8に示す式(1)(せん断摩擦理論式)との 比較では、A型試験体(●)の実験結果は計算 値の0.65~1.11倍となり、大部分の試験体で実 験結果が計算値を下回った。C型試験体(▲) の実験結果は計算値の1.20~2.37倍となり、全 試験体で安全側の結果となった。

図には示していないが、ダウエル作用による 式(式(2))の計算値は式(1)~式(3)のうちで最 も低く、実験結果はA型試験体で計算値の 1.90 ~3.05 倍、C型試験体で 3.47~6.65 倍と、計算 結果を大きく上回った。

図-9に示す式(3)(改修指針のアンカー式) の比較では、すべての試験体の実験値が計算結 果を上回った。A型試験体(●)の実験結果は 計算値の1.14~1.90倍、C型試験体(▲)の実 験結果は計算値の 1.08~2.03 倍となり,実験結 果より安全側で,且つ式(2)による計算値よりも 実験結果に近い結果となった。

### 3.3 割裂補強筋の挙動

はしご筋を壁厚方向に平行に2段配筋とした C16CS06H と, 壁厚方向に垂直に配置した C16CS10V 試験体の実験終了後の写真を**写真**-1に示す。C16CS06H 試験体では,増設部分上 面にひび割れは認められない。写真には示して いないが,はしご筋の方向は同じで一段配筋と した C16CS10H 試験体でもひび割れは発生しな かった。

一方,改修指針と配筋方向を変えた
C16CS10V 試験体では、増設部分の上面にひび
割れが発生している。割裂防止筋のない C16C





試験体でも,同じようなひび割れが発生した。 A型試験体でも同様の傾向が確認された。

アンカー筋の径が等しく、はしご筋の径・配
筋方向の異なる C16CS06H、C16CS10H、
C16CS10V 試験体の鉛直変位-はしご筋横筋の
ひずみを図-10 に示す。

図-10より,はしご筋が壁厚方向に平行に配 筋された C16CS06H, C16CS10H 試験体では, 載荷開始直後から割裂補強筋横筋に引張が生じ ている。一方,はしご筋を壁厚方向に垂直に配 筋した C16CS10V 試験体では割裂補強筋には引 張が生じていない。はしご筋がひび割れをまた ぐように配筋することで,はしご筋の横筋が有 効に働き,その結果としてはしご筋を壁厚方向 に平行に配筋した試験体では,図-2と図-4 に示したように大変形時にも耐力がほとんど低 下しなかったと考えられる。

# 4. まとめ

実験の結果,以下のような結果が得られた。 1)改修指針で示されている割裂補強筋は大変 形時にRM組積体の厚さ方向のふくらみやひび 割れを抑制する効果を持っている。また,改修 指針で示されたはしご筋を二段から一段に変更 した場合にも,同様の効果がある。

2)アンカー筋のひずみから接合部が一体と見 なせる点を定めた。この点までで接合部のせん 断耐力を求め、改修指針のアンカーせん断耐力 式との比較を行い、この式が適用できることを 確認した。

### 参考文献

 1)建設省建築研究所,日米共同組積造研究推進委員会:中層RM構造設計指針(案)・同解説, 建築研究振興協会,1989

2)日本建築防災協会:改訂版既存鉄筋コンクリ ート造建築物の耐震改修設計指針・同解説,日 本建築防災協会,1990

3)日本建築学会:壁式プレキャスト構造の鉛直 接合部の挙動と設計法,日本建築学会,1989