論文 非線形 FEM による RC 造耐震壁(CAMUS3)の地震応答解析

藤田 敬*1·白井 伸明*2·渡部 憲*3

要旨:本報では,5層 RC 耐震壁試験体 (CAMUS3)の振動台実験結果を対象として,コンク リートの破壊挙動を記述するために破壊力学概念を導入し,さらに鉄筋とコンクリートの 付着すべりを考慮した静的および動的2次元非線形 FEM 解析を実施し,その適用性につい て検討を行った。

その結果、時間積分法として数値減衰を考慮した Hilbert-Hughes-Taylor(HHT)法による 第 1 層脚部せん断力-第5層水平変位に関する予測履歴曲線は実験結果をおおむね近似し ており、本研究のモデル化および FEM 手法が妥当であることが確認できた。

キーワード: CAMUS3, 耐震壁, 静的 FEM 解析, 動的 FEM 解析, 破壊力学

1. はじめに

鉄筋コンクリート(以下, RC と略記)構造物 の主材料であるコンクリートは,引張強度が期 待できず,破壊も極めて脆性的であるため,適 切に鉄筋補強することが設計コードで定められ ている。しかし,設計コードの適用範囲を超え る場合,必要最低限の追加実験を行い,その性 能を明確にする必要がある。こうした実験を補 完するためにも,また耐震安全性を評価するた めにも,RC構造物の性能を適切に予測できる解 析手法の確立は重要な課題である。

RC構造物の解析手法の1つとしてFEM解析が 挙げられ,これまでにも数多くの研究成果が報 告されている¹⁾。しかし,特に動的荷重を受け る RC 構造物の破壊過程を明確に説明するまで には至っていない。この原因として,RC構造物 の主材料であるコンクリートの破壊挙動が適切 にモデル化されていないことが考えられる。

近年,コンクリートの破壊力学の目覚しい発達により,コンクリートの引張軟化挙動は多くの部分が解明され²⁾,合理的なモデルが提案されている³⁾。また,ピーク後の圧縮軟化挙動についても破壊力学的アプローチによるモデル化

の試みが報告されている⁴⁾。

本報では,第4回 Framework Programme 主催 で,ヨーロッパの耐震設計コード(EC8)を検証 するため,ICONS European Research Network により実施された5層 RC 耐震壁試験体 (CAMUS3)の振動台実験結果⁵⁾を対象として, 静的および動的2次元非線形 FEM 解析を実施し, その適用性について検討を行った。なお,解析 コードとして汎用構造解析プログラム DIANA⁶⁾ を用いた。

2. CAMUS3 試験体⁵⁾

写真-1 および図-1 に解析の対象とした試験 体の概要を示す。試験体は 1/3 縮尺の5層 RC 耐震壁モデルで,6枚の正方形床(フーチング に結合される床を含む)と,開口の無い2枚の 壁により構成されている。配筋は EC8 に準じた 仕様で,各階床には4.72tの質量ブロックが取 り付けられている。試験体の全高さは5.1m,全 質量は約 36t であり,試験体は PC 鋼棒により振 動台に固定されている。使用されたコンクリー トおよび鉄筋の材料特性をそれぞれ表-1(a)お よび 1(b)に示す。

^{*1} 日本大学大学院 理工学研究科建築学専攻(正会員)

^{*2} 日本大学教授 理工学部建築学科 工博(正会員)

^{*3} 東急建設(株)技術研究所建築研究室 工修(正会員)

写真-1 試験体形状

) コン:	ンクリートの材料特性		
指定条件				
ヤング係	数 圧綱	諸強度	ポアソン比	
Ec(GPa)	fc	(MPa)		
31.1	3	9.6	0.187	
(b) 鉄筋の材料特性				
種類	直径	降伏点	引張強度	
	(mm)	(MPa)	(MPa)	
HA3	3.0	814	849	
HA4.5	4.5	563	581	
HA5	5.0	631	646	
HA6	6.0	593	625	
HA8	8.0	486	587	

2.1 入力方法

入力地震動は、「フランス設計用加速度スペク トル」を代表する模擬地震動 Nice SI,および中 程度の near-field 地震動を代表する Melendy Ranch である。図-2 に採用された入力加速度の 時刻歴の例を示す。

試験体の加振は,振動台に取り付くアクチュ エーターにより,同一試験体について,Case-1

(Nice0.42g), Case-2 (Nice0.22g), Case-3
(Melendy Ranch1.35g), Case-4 (Nice0.64g),
Case-5 (Nice1.0g)の順番で行われた。加振方
向は写真-1に示す通りである。なお,各地震波
名の後ろの数値,例えば0.42gは拡幅した地震
波の最大加速度値であり,gは重力の加速度である。

図-3 に Melendy Ranch1.35g, Nice1.0g の 5% 減衰に対する応答加速度スペクトルを示す。な お, Melendy Ranch は高い加速度値成分を有し ており,その卓越振動数成分は CAMUS3 試験体の 1次固有振動数に相当している。

2.2 試験体破壊状況

図-4 に実験前の試験体の初期ひび割れ発生

図-4 ひび割れ発生状況(実験前)

状況を示す。試験体は実験前すでに施工ジョイ ント部(壁と床の打ち継ぎ部)に水平方向ひび 割れが発生している。なお,実験終了時におい ては、1層脚部のコンクリートが剥落し,鉄筋が 露出していた。また,垂直方向鉄筋は,端部の2 本が座屈,その他は破断していた。

3. FEM 解析

本解析では、コンクリートの圧縮軟化挙動お よび引張軟化挙動を記述するために、破壊力学 概念を導入した2次元静的および動的 FEM 解析 を行った。なお、解析コードとして汎用構造解 析プログラム DIANA⁶⁾を用いた。

3.1 試験体のモデル化

試験体は平面応力状態にあると仮定して,図 -5に示すように要素分割を行った。試験体は対称条件を利用して厚さ方向の1/2のみを考慮し, 自重および質量ブロックによる付加質量は,関 連する各要素の単位容積質量に含めることより 考慮した。つまり,壁板については自重のみを 考慮し,スラブについては自重に付加質量を加 算して,それぞれの単位容積質量を算出してい る。なお,フーチングと振動台は完全に結合さ れているものとした。

解析では、コンクリートおよび振動台を4節 点アイソパラメトリック要素で離散化した。一 方、鉄筋については、1階の縦筋のみ離散トラ ス要素でモデル化し、鉄筋とコンクリート間の

付着すべりを考慮した。その他の鉄筋について は、すべて埋め込み鉄筋要素でモデル化し、鉄 筋とコンクリート間の結合は完全付着とした。

フーチングと1階壁の界面および2~5階床 スラブと壁の界面には、実験で観察された初期 ひび割れを考慮するため、界面要素が設けてあ る。また、振動台のロッキングを考慮するため、 振動台の下3ヶ所に弾性ばねを設けた。バネの 垂直剛性は推奨値⁵⁾を採用し、端部バネは 400MN/m、中央バネは800MN/mである。

3.2 構成素材の構成則

フーチングのコンクリートは弾性体とした。 その他のコンクリートは弾塑性体と仮定し、破 壊基準として圧縮側は Von Mises,引張側はテ ンションカットオフ基準を適用した。また,鉄 筋には Von Misesの降伏基準を適用した。

コンクリートおよび鉄筋の構成則は以下の通 りである。

(1) コンクリート

コンクリートの各種材料定数を表-2(a)およ び 2(b)に示す。圧縮強度(f_c)は 39.6MPa,ヤ ング係数(E_c)は 31.1GPa,ポアソン比は 0.187 とした。圧縮側の 1 軸応カーひずみ関係として, 上昇域は図-6 に示すように 2 直線でモデル化 した。なお,圧縮強度時ひずみ(ε_c)は式(1) により算定した。

 $\varepsilon_{c} = 14.6 f_{c} + 1515 \tag{1}$

下降域は図-7 に示すように 2 直線でモデル 化した⁷⁾。なお, 圧縮破壊エネルギー (G_{Fc}) は 式 (2) により評価した。

 $G_{\rm Fc} = 0.5 \left(1 + \alpha \beta\right) f_{\rm c} d_1 \tag{2}$

塑性変形 (δ_c) は, 要素面積 (A) を考慮し, 式 (3) により塑性ひずみ (ε_{pc}) に変換する。

 $\varepsilon_{pc}=\delta_{c}/(2A)^{0.5}$ (3) なお,除荷および再負荷時の剛性は初期弾性剛 性(E_c)に従うものとする。

引張側の1軸応カーひずみ関係として,上昇 域は引張強度 (f_t)まで弾性とした。なお, f_t は CEB-FIP MODEL CODE 1990³⁾ により推定した。 下降域は図-8 に示すように3直線でモデル化 した⁸⁾。なお,破壊エネルギー (G_F) は式 (4) により決定した。

$$G_{\rm F} = (0.23f_{\rm c} + 136) / 1000$$
 (4)

分布ひび割れモデルの場合、ひび割れ幅(W) は、要素面積(A)を用いて、式(5)によりク ラックひずみ(ϵ_{cr})に変換する。

$$\varepsilon_{\rm cr} = W/(2A)^{0.5} \tag{5}$$

除荷および再負荷時の剛性は,割線ひび割れ剛 性に従うものとする。一方,離散ひび割れモデ ルの場合,図-8の関係が直接適用される。

ひび割れコンクリートのせん断剛性低下率 (β)は,式(6)により定義した⁶⁾。

 $\beta = G_{\rm cr}/G_0 = 1/(1 + \alpha \cdot \varepsilon_{\rm cr})$ (6)

ここに、G_{cr}:ひび割れ発生後のせん断剛性、G₀: ひび割れ発生前のせん断剛性、α:定数(=4447)

(2) 鉄筋

鉄筋の降伏点応力は表-1(b)に従い,応カーひ ずみ関係は bi-linear モデルを仮定した。なお, 鉄筋のヤング係数は 206GPa とし,第2勾配の剛 性は 2.06GPa とした。

(3) 付着すべり関係

鉄筋とコンクリート間の付着-すべりモデル は、図-9 に示す CEB-FIP MODEL CODE 1990³⁾を 適用した。

3.3 解析方法

静的解析は、まず、自重および付加質量を負荷し、その後、1階~5階の各階の天井スラブ 位置に等分布水平力を漸増的に与えて解析を進めた。なお、静的解析では振動台を取り除いた 試験体モデルを用いている。一方、動的解析で は、アクチュエータ設置部分に所定の加速度を 入力して応答を求めている。

非線形反復解析法として Newton-Raphson 法 を採用し,不釣合い力は当該ステップで解放し

た。また、制御法として荷重増分による弧長法 を用いた。動的解析では、直接時間積分法とし て数値減衰を考慮した Hilbert-Hughes-Taylor(HHT)法⁹⁾を用い,時間きざみ(Δ t)に ついて, Case-1~Case-4 は 0.01 秒, Case-5 は 0.005 秒とした。なお、時間積分法の影響を比 較するため、Case-1 では Newmark β 法(β =1/4: 平均加速度法)による検討も行った。減衰マト リックスCは、レーリー型減衰を仮定し、定数 α および β は h_1 =2.0%, h_2 =3.0%として次式によ り求めた。

 $h_n = \alpha / (2 \cdot \omega_n) + \beta \cdot \omega_n / 2$ (7)ここに、 ω_n :n次の固有円振動数

4. 結果と考察

4.1 固有値解析

固有値解析により求めた1,2および3次の固 有振動数は、10.47、17.81 および 18.03Hz であ った。実験で得られた1次の固有振動数 6.88Hz⁵⁾と比較して,解析の1次固有振動数 (10.47Hz)はやや高めの評価となっている。こ の一因として,実験前の試験体において,施工 ジョイント部のひび割れや壁部分の収縮ひび割 れが観察されていることが挙げられる。

4.2 静的 FEM 解析

図-10 に静的解析で得られた,第1層脚部の せん断力と第5層床の水平変位(以下, $Q_1 - \delta_5$ 関係と略記)の復元力特性を示す。実線は鉄筋 とコンクリートの付着すべり特性を考慮した場 合,破線は鉄筋とコンクリートを完全付着とし

(静的FEM解析)

第1層脚部せん断力Q,-第5層床変位δ,関係 図-11 (動的FEM解析, Newmark法)

図-10 第1層脚部せん断力 Q_1 -第5層床変位 δ_5 関係 図-12 第1層脚部せん断力 Q_1 -第5層床変位 δ_5 関係 (動的FEM解析, Hilbert-Hughes-Taylor法)

た場合の結果である。なお、図中には付着すべ りを無視した完全付着の計算結果も示してある。 付着すべりを無視すると、剛性および強度をや や高めに予測することが分かる。

4.3 動的 FEM 解析

図-11 に Case-1 に関する Newmark β 法による 計算値と実験で得られた $Q_1 - \delta_5$ 関係を比較して 示す。また、図-12 に Case-1, Case-3 および Case-5に関する HHT 法による計算値と実験で得 られた $Q_1 - \delta_5$ 関係を比較して示す。なお、 Q_1 は 各階床の応答加速度にそれぞれの集中質量を乗 じて得られた各階の慣性力の総和として求めた。 Case-1 に関する図-11 と図-12 の結果を比較す ると,時間積分法の相違がQ₁-δ₅関係に与える 影響は比較的大きく,HHT法による図-12の結果 の方が、実験値により近似している。

次に,図-12 に示した Case-1,3 および5の 比較結果より、計算値は概ね実験値と類似の傾 向を示していると言えよう。このことは、コン クリートの破壊挙動を記述するために破壊力学 概念を導入した軟化モデル、さらには鉄筋とコ ンクリートの付着すべりを考慮した本 FEM 手法 が概ね妥当であることを示している。なお,

Case-5の場合,解析は負側の変形を過小評価し ている。これは,実験では1階壁端部の主筋座 屈やコンクリート剥離が観察されており、破壊 が負側に偏って進行したためと考えられる。

図-13に Newmark *B*法および HHT 法により計算 した第5層床の応答加速度のフーリエスペクト ルを示す。図から分かるように、HHT 法は Newmark β 法に比べて,高次モードの成長を抑制 しており、このことが図-11の Case-1 と図-12 の Case-1 の応答結果の相違に繋がったと考え られる。

5. まとめ

5 層 RC 耐震壁試験体の振動台実験を対象とし て、破壊力学概念を導入した FEM 解析を実施し た。その結果、Case-1,3では第1層脚部せん 断力-第5層水平変位に関する実験結果と HHT 法により求めた計算結果はおおむね対応してお り,本 FEM 手法が妥当であることが確認できた。 しかし、Case-5では、実験において鉄筋座屈や コンクリート剥離が生じており、実験値と解析 値の対応は良くない。

今後は、コンクリートの繰返し応力下での挙 動を正確に表現できるモデルの開発およびプロ グラムへの組込みを行う必要がある。

謝辞

本研究の一部は文部省学術フロンティア推進事業(日本大 学理工学部):研究課題「環境・防災都市に関する研究(研究代 表者:川幡長勝)」の一環として実施したものであり、また一 部は科学研究費補助金(基盤研究(C)(2))の助成を受けて行 われたものである。

- 参考文献 1)たとえば,鉄筋コンクリート構造の有限要素解析と設計法研 究委員会:RC構造のせん断設計法に関する解析的研究,日 本コンクリート工学協会,JCI-C18,238pp.,1989.10 2)破壊力学の応用研究委員会:破壊力学の応用研究委員会報告 書,日本コンクリート工学協会,1993.10
- 3)CEB:CEB-FIP MODEL CODE1990 DESIGN CODE, Thomas Telford Service Ltd., 1993
- 4)Gro Markeset: Failure of Concrete Under Compressive Strain Grandients, A Thesis for a Doctorate of University of Trondheim, Dec.1993
- 5) ICONS European Program Seismic Tests on R/C Bearing Walls -CAMUS3 Specimen., Mar.2000
- 6)DIANA Foundation Expertise Center for Computational Mechanics: DIANA Finite Element Analysis User's Manual,
- Mechanics: DIANA Finite Element Analysis Oser's Manual, TNO Building and Construction Research., 1999 7)渡部 憲, 白井伸明, 大岡督尚, 森泉和人:各種コンクリー トの圧縮軟化挙動, コンクリート工学年次論文報告集, Vol.22, No.2, pp.493-498, 2000 8)大岡督尚, 橘高義典, 渡部 憲:コンクリートの破壊パラメ ータに及ぼす短繊維混入および材齢の影響, 日本建築学会 構造系論文集, 第 529 号, pp.1-6, 2000.3
- 9)Earthquake Engineering and Structural Dynamics, Vol.5, 283-292, 1977

-36-