論文 曲げモーメントが作用する鉄筋コンクリートパネルのせん断性状

伊藤 正通*1・金久保 利之*2

要旨:面内曲げモーメントおよびせん断力を受ける RC パネルの力学性状を検討することを目 的とし、曲げモーメントが作用する場合の RC パネルのせん断性状評価方法を Collins 等の Modified Compression-Field Theory をもとに新しく提案した。平板二軸加力装置により、曲げモ ーメントとせん断力の比率を変化させた加力実験を行い、提案方法の適合性についても検討を 加えた。その結果、提案方法により得られたせん断応カーせん断歪関係、曲げモーメントー曲 率関係の解析結果は、実験結果とよい対応を示した。

キーワード:パネル,二軸性状,曲げモーメント,曲げせん断性状

1.はじめに

鉄筋コンクリート(以下 RC)部材のせん断性 状に関する研究は,現在までに数多くなされてお り,例えばアーチ・トラスモデルに代表させるよ うなマクロモデルを用いた解析手法も種々提案さ れている¹⁾。マクロモデルでは一般に曲げモーメ ントの作用は無視され,コンクリートの有効圧縮 強度等,理想的に部材腹部にせん断力や軸力のみ が作用した場合の力の釣合条件を考慮している。

一方, RC のせん断性状を検討する方法として Collins 等による Modified Compression-Field Theory²⁾(以下 MCFT)が挙げられる。MCFT では, 繰返し計算を必要とするが,力の平衡条件ととも に変形適合条件も考慮されるため,力と変形の関 係や種々の破壊モードを求めることができる。し かし,MCFT では出発点が RC パネルのため壁や シェル要素には適合させやすいが,柱や梁等の一 般の部材への拡張は難しい。現在,一般の部材へ の拡張を目的として曲げモーメントや軸力による 軸方向の歪の適合条件を考慮したせん断評価法も 提案されている^{3,4}。

本研究では一般の RC 部材のせん断性状評価に 資するために,面内曲げモーメントおよびせん断 力を受ける RC パネルの力学性状検討方法を,新

*1 筑波大学大学院(正会員) *2 筑波大学講師 機能工学系 博士(工学)(正会員)

たに MCFT を基にして提案する。さらに平板二軸 加力装置により曲げモーメントとせん断力の比率 を変化させた加力実験を行い,提案方法の適合性 について検討を行う。

なお通常の RC ではせん断ひび割れ面での骨材 のかみ合いによるせん断応力伝達を考慮する必要 があるが,本報では簡略化のためモルタルを用い て実験を行い,解析においても骨材のかみ合いは 無視している。

2.面内曲げモーメントとせん断力を受ける要素の解析方法

2.1 解析方法の概要

本研究では図-1 に示すようなパネル要素に,面 内の純せん断応力と純曲げモーメントが作用する 場合の解析方法を検討する。MCFT では,パネル 要素に一様に圧縮力や引張力の外力が作用する場 合の純せん断応力場(二軸複合応力場)の解析が 可能である。そこで本研究では図-2に示すように パネル要素をさらにy方向に分割し,外力として の曲げモーメントが各小要素に軸方向力として作 用すると考え,各小要素について MCFT による解 析を行うことによって,トータルとして純せん断 応力と純曲げモーメント下の複合応力場での解析

図-2曲げ加力分布

を行う。計算の簡略化のため各小要素の軸方向力 はy方向に対して直線分布とし、それらの合力が 目標とした純曲げモーメントと等しくなるように 解析を行う。軸方向力を直線分布とするため、曲 げに対しての平面保持の仮定は成り立たない。ま た MCFT の解析では、対象を全て平均化して行う ので、鉄筋は各小要素に均等に含まれるものと考 える。また各小要素に対して主歪、せん断歪等が 得られるため、最終的な出力は各小要素で平均化 する等の作業が必要である。

2.2 解析手順

本節では、具体的な解析手順を述べる。

まず,目標とする純曲げモーメントを設定し, 要素分割に応じてそれらの要素に作用する軸方向 力を,設定した曲げモーメントと等しくなるに決 定する。曲げモーメントは一定値でも可能である が,本研究では後述の実験と合致するように純せ ん断力と比例して増大するものとし,その比例定 数を変数としている。また要素分割数は100とし た。

次に分割された各要素に対して MCFT による繰

返し逐一計算を行う。各要素の歪を図-3のように 定め、引張主歪 (ε_1)、x 方向と圧縮主歪 (ε_2) とのなす角 (θ), 各鉄筋の平均応力 (f_r) を適当 に決める。MCFT におけるコンクリートの引張応 カー引張歪関係(図-4)から, ε_1 に対応する主引 張応力(f_{cl})を求める。続いて力の釣合い関係か ら, せん断応力 (τ_{xy})を求める。 f_{cl} , τ_{xy} より, コンクリートについてのモールの応力円から、主 圧縮応力(f_{c2})を求める。また、コンクリートの 圧縮強度 (f_{c2max}) を ϵ_1 から求める。なおこの関係 式については MCFT をモルタルの場合について改 良を加えたもの ⁵⁾を用いた。 f_{c2} が、 f_{c2max} より大き ければ、コンクリートは圧壊したということがい える。コンクリートの圧縮応力-圧縮歪関係(図 -5)から, 圧縮主歪 (ε,)を逆算し, その後モー ルの歪円からy方向の歪(ε_v)を求める。

さらに各鉄筋における力の釣合いから,各鉄筋 の平均応力を求める。ここで求めた各鉄筋の平均 応力と,最初に適当に決めた各鉄筋の平均応力が 一致するまで,最初に決める各鉄筋の平均応力の 値を入れ替えて,以上の手順を繰り返す。曲げモ ーメントによって定めた各要素の軸方向外力が, 解析によって得られたx方向の外力(f)と等しく

図-3 要素内の歪

図-4 コンクリートの引張応力-歪関係

図-5 コンクリートの圧縮応カー歪関係

なるまで、 θ の値を入れ替えて計算する。最後に モールの歪円からせん断歪(r_{xy})を求める。以 上の手順より、最初に仮定した ε_1 に対応した τ_{xy} と r_{xy} が求められる。また各要素間での ε_x の差を 求めることにより、パネルの曲率(ϕ_y)が算出さ れる。

2.3 解析結果の例

後述する試験体 SD シリーズを例に挙げ解析結 果の一例を示す。SD シリーズ試験体は縦方向(x方向)の補強筋が横方向(y 方向)の補強筋量の 倍量配筋してある試験体である。せん断応力(τ $_{xy}$) ーせん断歪(r_{xy})関係および曲げモーメント ($m_y = M/tD^2$)ー曲率(ϕ_y)関係を,図-6 および 図-7 に示す。せん断応カーせん断歪関係は全分割 要素数の中央部 2/3 領域端で得られた値の平均, 曲率は同中央部 2/3 領域端で得られた症値から算 出したものであり,後述試験体での変位計設置位 置と対応している。せん断応力と曲げモーメント の比率(τ_{xy} : m_y ,以下せん断曲げ比と略記)は 1:0.089(1:0.5 と表記),1:0.178(1:1.0 と表 記),1:0.356(1:2.0 と表記)の場合である。せ ん断応カーせん断歪関係に着目すると曲げモーメ ントの比率が大きくなるほど同一歪時のせん断応 力は小さくなる。逆に曲げモーメントー曲率関係 では曲げモーメントが大きくなれば当然同一曲率 時の曲げモーメントが大きくなっている。これは, 曲げモーメントの比率が大きくなるとせん断歪が 同一でも,主に引張力を受ける要素のひび割れや 補強筋の降伏が早期に発生するためである。

前述3種類のうち, せん断曲げ比が1:1.0の試験 体について, 最外縁コンクリートひび割れ時の各 要素の主歪分布を図-8に示す。x軸と ε₁ とのなす 角度は中心部で45°となり, 引張側では, 端部に 行くほど増加し, 一方圧縮側では減少していく傾 向がみられた。

3.面内曲げモーメントとせん断力を受けるパネ ルの実験

本研究では前章で提案した解析方法の適合性に ついて検討するために,実際に RC パネルの純曲 げ純せん断加力実験を行い,得られた実験結果を 解析結果と比較した。

3.1 試験体

試験体は 300×300×25mm の RC パネルで,加 力装置固定用孔を 24 カ所,変位計固定用ボルトを 4 カ所に設けた。図-9 に試験体図を示す。実験パ ラメータは縦筋,横筋の配筋量(D4 シングル @75mm, D4 ダブル@75mm)およびせん断応力に 対する曲げモーメントの割合とし,これらのパラ メータを組み合わせた 11 体の試験体で実験を行

262.5

225.0

187.5

150.0 112.5 75.0 37.5 0.0 37.5 112.5 112.5 37.5 0.0 37.5 0.0 37.5 0.0 0.

図-8 主歪分布の例(M5-SD10)

試験体名	使用 モルタ ル	使用 鉄筋	配筋(75mm ピッチ)		せん断曲げ比		
			橫(y方向)	縦 (x 方向)	応力比 (τ _w :m _y)	基準ジャッキの加力比 (<i>P₁</i> : <i>P₂)</i>	
M5-SS00	M5(1)	D4(1)			1:0.000	1:0.0	
M5-SS02	M5(2)	D4(2)			1:0.036	1:0.2	
M5-SS05	M5(1)	D4(1)	シングル (ρ _y =0.00502)	シングル (_{ク x} =0.00502)	1:0.089	1:0.5	
M5-SS10	WI3(1)				1:0.178	1:1.0	
M5-SS20		D4(2)			1:0.356	1:2.0	
M5-SS50					1:0.889	1:5.0	
M5-SD05					1:0.089	1:0.5	
M5-SD10	M5(2)				1:0.178	1:1.0	
M5-SD20				ダブル	1:0.356	1:2.0	
M5-DD05			ダブル (0 -0.01005)	(\$\rho_x = 0.01005)	1:0.089	1:0.5	
M5-DD10					1:0.178	1:1.0	
M5-DD20			(× _y =0.01003)		1:0.356	1:2.0	

表-1 試験体一覧

った。表-1に試験体の一覧を示す。

3.2 使用材料

実験に用いたモルタルは目標強度を 50MPa と したプレミックスモルタルを使用した。モルタル の力学的特性を表-2 に示す。また異形鉄筋 D4 の 力学的特性を表-3 に示す。

3.3 加力・計測方法

加力には 24 本の油圧ジャッキを使用し,圧縮 力および引張力の油圧源をそれぞれ 3 系統に分け, 目標とする二軸複合応力場を与えた。例として, せん断曲げ比が応力比で 1:0.089, すなわち基準ジ ャッキの加力比が 1:0.5 の場合の加力図を図-10 に 示す。本実験における計測項目はジャッキの荷重 値,試験体標点間の変形量,主な位置での鉄筋歪 である。図-11 に変位測定位置を示す。変位計は 試験体の表裏に設置し,両面の各辺に対し平行な 位置(辺から 50mm) に 4 箇所,引張方向の対角 線上に 1 箇所の計 5 箇所に設置した。

表-2 モルタルの力学的特性

モルタル 種類	圧縮強度 (MPa)	割裂強度 (MPa)	ヤング係数 (GPa)		
M5(1)	42.7	3.49	21.7		
M5(2)	36.6	2.40	19.2		
注)加力時材齢は M5(1)が 47~65 日, M5(2)が 28~30 日					

である。 表-3 鉄筋の力学的特性

外篮话箱	降伏強度	引張強さ	ヤング係数		
<u></u>	(MPa)	(MPa)	(GPa)		
D4(1)	228	285	191		
D4(2)	299	395	185		
300					

25

<u>治具固定用孔φ10</u> 変位計固定用ポルトM6

図-9 試験体図

図-10 加力方法(せん断曲げ比1:0.5の場合)

-1030 -

封除休夕	最大	せん断応力	(MPa)	最大曲げモーメント(MPa)			破壞
114天114-11	実験結果	解析結果	実験/解析	実験結果	解析結果	実験/解析	形式*
M5-SS00	1.51	2.03	0.74				F→C
M5-SS02	1.77	1.94	0.91	0.063	0.069	0.91	F
M5-SS05	1.49	1.66	0.90	0.133	0.148	0.90	F
M5-SS10	1.35	1.40	0.96	0.239	0.248	0.96	F
M5-SS20	1.17	1.05	1.11	0.417	0.372	1.12	F
M5-SS50	0.46	0.56	0.82	0.406	0.499	0.81	E
M5-SD05	2.31	2.36	0.98	0.204	0.210	0.97	F
M5-SD10	1.93	2.09	0.92	0.342	0.371	0.92	F
M5-SD20	1.75	1.59	1.10	0.622	0.567	1.10	F
M5-DD05	2.90	2.96	0.98	0.258	0.263	0.98	F
M5-DD10	2.66	2.44	1.09	0.476	0.435	1.09	F
M5-DD20	2.33	1.72	1.35	0.827	0.613	1.35	F

表-4 実験結果

*F:鉄筋の引張降伏 C:コンクリートの圧縮破壊 E:端部破壊

図-11 変位測定位置

3.4 実験結果

実験で得られたデータから次式を用いてパネル のせん断応力,曲げモーメント,せん断歪,曲率 を算出した。

$$\tau_{xy} = 3\sqrt{2} \cdot P_1 / (t \cdot b) \tag{1}$$

$$m_{y} = \sqrt{2} \cdot e \cdot P_{2} / (t \cdot D^{2})$$

$$(2)$$

$$y = \int (\min(e_{1} + e_{2} + e_{3}))$$

$$-\min(\varepsilon_{disp2}, \varepsilon_{disp4}))^{2} + \varepsilon_{disp5}^{2} \Big\}^{0.5}$$
(3)

$$\phi_y = (\varepsilon_{disp1} - \varepsilon_{disp3})/l \tag{4}$$

ここで,

- *て_{xv}: せん断応力*
- my:曲げモーメント(応力)
- ア_{xy}: せん断歪
- *ϕ*_v:曲率
- P1: 純せん断加力基準荷重値
- P₂:純曲げ加力基準荷重値
- t:パネルの厚
- b:パネルの幅

ε dispi:変位計による測定歪(図-11と対応)

e:曲げ加力偏心量

1:標点間距離(=200mm)

D:パネルの全せい

実験結果の例として縦筋,横筋をシングル配筋 とした5体の試験体(SSシリーズ)のせん断応カ ーせん断歪関係を図-12 に,曲げモーメントー曲 率関係を図-13 にそれぞれ示す。ほぼすべての試 験体においてせん断曲げ比が大きくなるほどにせ ん断耐力が減少する傾向がみられた。表-4 に実験 結果の一覧(最大せん断応力,最大曲げモーメン ト,最終破壊形式)を示す。試験体の最終破壊形 式は鉄筋の引張降伏(F)とコンクリートの圧縮 破壊(C),そして端部破壊(加力途中の掴み部で の破壊)(E)の3種がみられた。

3.5 解析結果と実験結果の比較

実験結果と解析結果の比較の例として横筋をシ ングル,縦筋をダブル配筋にした試験体(SDシ リーズ)のせん断応カーせん断歪関係を図-14に, 曲げモーメントー曲率関係を図-15 にそれぞれ示 す。解析結果は図-6 および図-7 の場合と同様に変 位計測区域 200mm での各関係を平均化したもの である。各関係ともに曲線の形状,最大せん断応 カ,トリリニア型グラフの第二直線部分の傾き等 において実験結果と解析結果はおおよそ類似して おり,提案された解析法の妥当性が伺える。最大 せん断応力および最大曲げモーメントに関して,

図-12 せん断応カーせん断歪関係 図-13 曲げモーメントー曲率関係 図-14 せん断応カーせん断歪関係

図-15曲げモーメントー曲率関係

各試験体の解析値および実験と解析の比較値を表 -4に併せて示す。実験結果の解析結果に対する比 は、全試験体平均で最大せん断応力では0.99、最 大曲げモーメントでは1.01であり、ほぼ全ての試 験体で実験値に類似した解析値を得ることができ た。

4.まとめ

本研究では、一般の RC 部材のせん断性状評価 に資するために、面内曲げモーメントおよびせん 断力を受ける RC パネルの力学性状検討方法を、 新たに Collins 等の MCFT を基に提案した。本方 法は、曲げモーメントを等価な軸方向外力として パネルに作用させ、力の平衡条件および変形適合 条件によりパネルの力学性状を得るものである。 さらに平板二軸加力装置により曲げモーメントと 純せん断力の比率を変化させた加力実験を行い, 提案方法によりおおむね実験結果を表現できるこ とを示した。

参考文献

- 1) 例えば日本建築学会:鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説 pp.142-162, 1997.7
- Vecchio, F.J. and Collins, M.P. : The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Journal, pp.219-231, March-April 1986
- Collins, M.P., Mitchell, D., Adebar, P., Vecchio, F.J.: A General Shear Design Method, ACI Structural Journal, Vol.93, No.1, pp.36-45, Jan.-Feb., 1996
- Rahal,K.N. : Shear Strength of Reinforced Concrete : Part II -Beams Subjected to Shear, Bending Moment, and Axial Load, ACI Structural Journal, Vol.97, No.2, pp219-224, March-April, 2000
- 5) 伊藤正通,加藤祐介,金久保利之:コンクリートの強度および種類が RC パネルのせん断性状に及ぼす影響,コンクリート工学年次論文集,第22巻,第3号,pp.157-162,2000.6