論文 静的非線形解析に基づく SRC ラーメン橋脚の耐震設計法に 関する研究

内藤英樹*1·秋山充良*2·鈴木基行*3

要旨: SRC1 層ラーメン橋脚の面内方向を対象として、軸方向鉄筋の座屈挙動を考慮したファ イバー要素によるプッシュオーバー解析を基にラーメン橋脚としての降伏点および終局点を 定義した。また、エネルギーー定則を用いることで弾塑性地震応答変位を推定し、動的解析 結果との整合性を検討した。そして、静的非線形解析に基づく SRC1 層ラーメン橋脚の耐震 設計法に関する考察を行った。

キーワード: SRC1 層ラーメン橋脚, ファイバー要素, 地震応答解析, 耐震設計

1. はじめに

近年、これまで主に建築分野で用いられてき た鉄骨鉄筋コンクリート(以下, SRC)部材の土 木構造物への適用例が増加している。 SRC 構造 は、鉄骨と鉄筋コンクリートの両者の利点を兼ね ることが可能であり、適切な鉄筋量と鉄骨の鋼 材量の比率を持つ断面ならば、軸方向鉄筋の座 屈後も優れた変形性能を発揮する。一方、SRC 構造を採用した土木構造物の地震応答解析は, これまでほとんど行われていないため、その地 震応答性状や耐震設計法に関する検討が十分で あるとは言い難い。特に、単柱式 RC 橋脚や RC1 層ラーメン橋脚では,弾塑性地震応答変位の推 定に関するエネルギーー定則の適用性や終局(許 容)変位の設定に関しても、十分な検証がされて いるのに対し¹⁾, SRC 構造では, そのような手 法の適用性が検討された例はない。

そこで本研究では、断面に占める鉄筋量と鉄 骨の鋼材量の比率を変化させた2つのSRC1層 ラーメン橋脚を対象に、ファイバー要素を用い たプッシュオーバー解析や時刻歴地震応答解析 を行い、SRC1層ラーメン橋脚へのエネルギーー 定則の適用性などを検討した。そして静的非線 形解析に基づくSRC1層ラーメン橋脚の耐震設 計法に関して考察した。 2. 解析モデル

2.1 橋脚モデル

解析対象は、図-1に示されるSRC1層ラーメ ン橋脚である。この橋脚は、河川上を通過する高 架道路の設計計算例²⁾を引用したものであり、解 析条件に合わせ、上部構造重量等を修正してい る。解析は、軸方向鉄筋の座屈を考慮したファイ バーモデルにより行い、汎用プログラム MARC を使用している。予備解析として行ったプッシュ オーバー解析において、図-1に示すラーメン橋 脚では、梁部の曲げ耐力が柱部に比べ十分に大 きく塑性化しないことが確かめられたので、柱 の下端部(柱1,柱2)および上端部(柱3,柱4)の 塑性ヒンジ領域をファイバー要素によりモデル 化した。塑性ヒンジ長は、後述する加藤らの軸 方向鉄筋の座屈モデル³⁾を用いて計算される座 屈長から900mmとした。

解析は有限変形解析であり、ファイバー要素 では、鉄骨部分を25分割程度、コンクリート部 分を50分割程度とした。また、軸方向鉄筋は、 配筋時の鉄筋中心位置でモデル化した。

2.2 材料特性

ファイバー要素で用いるコンクリートの応力-ひずみ関係は、図ー2に示されるように、拘束 条件の違いから、かぶりコンクリート部分と帯鉄

*1 東北大学 大学院工学研究科土木工学専攻(正会員)
*2 東北大学助手 大学院工学研究科土木工学専攻 工修(正会員)
*3 東北大学教授 大学院工学研究科土木工学専攻 工博(正会員)

図-1 解析対象橋脚²⁾

筋による拘束効果が期待できるコアコンクリー ト部分の2つの領域に分けてモデル化した。か ぶりコンクリートを除く全ての領域において、 最大圧縮応力到達後は、図-2に示されるよう に、星限らによるモデル⁴⁾に従い応力を低下さ せた。ただし、収束応力は最大圧縮応力の20% とした⁵⁾。また、かぶりコンクリート部分は、最 大圧縮応力点までは、星限らによるモデルを用 い、その後は圧縮ひずみ0.01で応力が0となる ような直線勾配によって下降させた。

鉄筋の応力-ひずみ関係は、図-3に示される 加藤らにより提案³⁾された座屈モデルを用いた。 加藤らの座屈モデルは、主にかぶりコンクリート が無い状態における RC 柱の一軸圧縮実験の結果 を回帰したモデルである。しかし、SRC 部材に おいては、かぶりコンクリートの剥落後も鉄骨部 が圧縮力を分担しているため、その軸方向鉄筋 の座屈開始時の側方からの拘束条件などは、加藤 らの実験供試体中の軸方向鉄筋に近いと判断し、 加藤らのモデルを適用した。また、その履歴則

には、図-3に示されるように Menegotto-Pinto モデルを用いた。なお、Menegotto-Pintoモデル では、鉄筋の座屈後も過去の折り返し点(K点) を目指し、降伏後の第2勾配で漸近するものと し、圧縮側から引張側に向かう履歴則は、村山 らの研究⁶⁾を参考に、引張側の過去最大ひずみ 点を直線で目指すものとした。

また鉄骨は、コンクリート中に埋め込まれて

図-2 コンクリートの応力-ひずみ関係

図-3 鉄筋の応力-ひずみ関係

おり、フランジ座屈が生じにくく、また、座屈 が生じても、SRC部材は緩やかな耐力低下しか 示さないことを指摘する実験結果も報告⁷⁾されて いる。そこで、鉄骨の応力-ひずみ関係は、座屈 による影響を考慮せず、骨格曲線には完全弾塑 性型モデル、履歴則としては、Menegotto-Pinto モデルを用いた。

		AL IN AL ANY (1. *1		モーメ	・ント(×10		
		跌有跌肠比 **	鋼和庄(%) **	M _{sc}	Mrc	M_u	Msc/Mrc
橋脚R	柱1,柱2の断面	0.81	4.81	2.04	2.80	4.07	0.73
	柱3,柱4の断面	0.88	4.60	1.95	2.58	3.79	0.76
橋脚S	柱1,柱2の断面	2.98	4.58	3.18	1.63	4.07	1.95
	柱3,柱4の断面	3.51	4.42	3.10	1.43	3.81	2.17

表-1 橋脚Rおよび橋脚Sに与えた断面諸元

*1)鉄骨鉄筋比=(鉄骨の断面積)/(鉄筋の断面積), *2)鋼材比⇒(鉄筋と鉄骨の断面積の和)/(コンクリート有効断面積)

2.3 断面諸元

SRC 断面では、鉄筋量と鉄骨の鋼材量の違い により、軸方向鉄筋の座屈に伴い急激な耐力低 下を示す(以下, RC 的断面)場合と、鉄骨断面積 が十分であり、座屈以降も緩やかな耐力低下を 示す(以下, SRC 的断面)場合がある。別途行っ た SRC 柱のパラメータ解析においても、軸力比 0.21 以下において、SRC 断面から軸方向鉄筋を 除いた鉄骨コンクリート断面の曲げ耐力(以下, *M_{sc}*)と鉄骨断面を除いた鉄筋コンクリート断面 の曲げ耐力(以下, *M_{rc}*)の比*M_{sc}/M_{rc}*が,およ そ1.5 以上となるように鉄筋量および鉄骨の鋼 材量を決定すれば、軸方向鉄筋の座屈後におい ても、大幅な耐力低下を避けることができるこ とを確認している。

そこで、図-1のラーメン橋脚モデルとして、 SRC的断面を有する橋脚(以下,橋脚S)とRC的 断面を有する橋脚(以下,橋脚R)を考慮した。 橋脚Rおよび橋脚Sに与えた断面諸元を表-1 に示す。図-1の橋脚下端部の塑性ヒンジ領域 (柱1,柱2)に与える断面および橋脚上端部の塑 性ヒンジ領域(柱3,柱4)に与える断面は、同一 としている。表-1に示される断面諸元は、後 述するプッシュオーバー解析とエネルギーー定則 から推定される弾塑性地震応答変位が、定義し た許容塑性率以下となるように設計した結果で ある。また、橋脚Rおよび橋脚Sの保有水平耐 力を等しくするため,各断面の終局曲げモーメ ント(コンクリート縁ひずみが0.0035に達する時 のモーメント)が概ね同じ値となるようにし、各 断面の鋼材比(鉄筋と鉄骨の断面積の和/コンク

図-4 タイプⅡ地震動の加速度応答スペクトル

リート有効断面積) についても同程度となるよう に配慮した。なお、断面を設計する際の構造細 目は、鉄道構造物等設計標準⁸⁾を参考としたが、 橋脚Rについては、鉄骨鉄筋比の細目のみ満足 していない。

2.4 動的解析法と入力地震動

時刻歴地震応答解析で用いた入力地震波は, 道路橋示方書に規定されるタイプII 地震動の標 準加速度応答スペクトル(II 種地盤)に適合する ように振動数領域で振幅調整した標準波形¹⁾(タ イプII-II-1)である。図-4にタイプII-II-1の 加速度応答スペクトルを示す。

数値積分法には、平均加速度法 ($\beta = 1/4$) と した Newmark の β 法を用い、計算の時間刻みは 1/500 秒を基本とした。また、減衰力は Rayleigh 減衰により与えた。

図-5 橋脚Rのプッシュオーバー解析の結果

<u>表一2</u>橋脚Rおよび橋脚Sの動的解析と静的解析結果の比較

	降伏点		最大都	苛重時	終局点			許容塑性率		応答塑性率		
					定義1		定義2					
	変位 (mm)	荷重 (MN)	変位 (mm)	荷重 (MN)	変位 (mm)	荷重 (MN)	変位 (mm)	荷重 (MN)	定義1	定義2	ェネルギー 一定則	動的 解析
橋脚R	70	10.3	93	10.6	685	8.5	640	8.7	6.8	6.4	5.8	3.9
橋脚S	70	10.2	365	10.7	1199	8.6	701	9.6	11.8	7.0	5.8	3.7

- 3. 解析結果
- 3.1 プッシュオーバー解析とエネルギーー定 則に基づく弾塑性地震応答変位の推定

橋脚Rおよび橋脚Sの橋脚天端位置に強制変 位を与えることで、プッシュオーバー解析を行っ た。結果を図-5および図-6に示し、具体的 な最大耐力の大きさなどを表-2に示した。な お、図中の降伏発生とは、最外縁引張鉄筋が降 伏したことを示している。また、橋脚としての 降伏変位δyは、ファイバー要素でモデル化する 4つの塑性ヒンジ領域(柱1~柱4)の中で、最初 に降伏が生じる点を初降伏点とし、原点と初降 伏点を結んだ直線が最大荷重に達する時の変位 と定義した。そして両図の横軸は、各載荷ステッ プにおける橋脚天端位置の変位δをδyで除した 塑性率として表記している。また、図中の縦軸 は、強制変位を与えた反力として得られる荷重 値を等価重量で除した震度として示した。

図-5および図-6の比較から、橋脚Rと橋

脚Sは、概ね同程度の保有水平耐力を有してお り、4つの塑性ヒンジのうち3つで軸方向鉄筋 の座屈が生じると耐力低下が始まる。そして、 塑性変形が進行すると、それぞれの耐力低下量 にはRC的断面およびSRC的断面を有する両橋 脚の差が現れている。

次に、図-5 および図-6 のプッシュオーバー 解析結果をもとに、SRC1 層ラーメン橋脚の終局 点を定義した。終局は、最大荷重 P_m の 80% 耐力 を保持する最大変位点 (定義 1), もしくは 4 つの 塑性ヒンジで座屈が発生した点 (定義 2) とした。

この2つの定義に従い,終局変位 δ_u を算定し, また道路橋示方書と同様に,式(1)に従い許容塑 性率 μ_a を求めた結果を表-2に示した。

$$\mu_a = 1 + \frac{\delta_u - \delta_y}{\alpha \delta_y} \tag{1}$$

ここに, α: 安全係数 (= タイプ II 地震動に対 しては 1.5)。 表-2に示される通り、橋脚Rでは、定義1お よび定義2に従い算定される終局変位は、概ね 等しいのに対し、橋脚Sでは、両者の差が大き くなった。また橋脚Sは、軸方向鉄筋の座屈が 生じても耐力低下が小さいSRC的断面を有する ため、定義1で算定される終局変位が橋脚Rに 比べ著しく大きくなった。しかし、地震後の使 用性や復旧の観点からは、定義1を採用するこ とは望ましいとは言えず、設計上は定義2で終 局を与え、それ以降の塑性変形能については、 想定した以上の地震動が作用した場合の安全余 裕分と見なすべきと考える。定義2を採用した 場合には、式(1)に従い算定される許容塑性率 は、橋脚Rおよび橋脚Sともに、耐力低下域に 入った程度の応答に相当する。

そして、定義した橋脚としての降伏点から、図 -5 および図-6 に示されるように、完全弾塑 性型の骨格曲線を仮定したエネルギーー定則に基 づき応答塑性率を算定した結果を表-2 に示し てある。なお、橋脚Sおよび橋脚Rの1次モード の固有周期は、ともに0.63 秒であることから、 弾性応答水平力に相当する震度は、図-4 より 1.75 としている。また、前述した通り、橋脚Sお よび橋脚Rは、このようにして算定される応答 塑性率が、式(1)の許容塑性率以下となるように 設計されている。

次項において、このエネルギー一定則から算定 される応答塑性率と時刻歴地震応答解析結果の 比較を行い、静的非線形解析に基づく SRC ラー メン橋脚の耐震設計法に関する考察を行う。

3.2 SRC ラーメン橋脚の地震応答解析

橋脚Rと橋脚Sに対し、タイプII-II-1を入力 した時の橋脚天端位置における応答変位の時刻 歴を地震波入力後4秒から10秒に対して図-7 に示した。なお、応答変位は、前述した橋脚と しての降伏変位δyで除した塑性率として表記し ている。図中の白丸は、橋脚Rの座屈発生点を 示しており、タイプII-II-1の入力に対し、柱1 の塑性ヒンジでは座屈が発生しなかったことが 確認される。

図-7 橋脚天端位置の時刻歴応答

図-7に示す動的解析結果とエネルギー一定 則に基づき推定した応答塑性率の比較を表-2 に示す。エネルギーー定則から推定される応答 塑性率は、動的解析結果に対し、安全側の値を 与えており、その精度は、RC橋脚などに適用し た場合と同程度であると思われる⁹⁾。これは、最 大耐力以降においては、SRC部材は埋め込まれ た鉄骨の影響により、RC部材に比べより安定 した紡錘形のループ形状を呈するのに対して, 本解析で検討する程度の応答変位量であれば, 両者の履歴特性には大きな相違が見られなかっ たことも関係している。従って、SRCラーメン 橋脚もRC橋脚などの場合と同様の手順でタイ プII地震動に対して耐震設計することは可能で あり, 軸方向鉄筋の座屈挙動までも考慮した本 解析から、定義2と式(1)を用いた許容塑性率以 下に応答塑性率を抑えれば、十分な耐震安全性 を確保できると思われる。なお、ここに提示し た応答塑性率の推定精度は、想定地震動や解析 対象橋脚の固有周期などにより大きく変動する ことが予想される。本研究では、実務設計で用 いられる地震波によりエネルギーー定則のSRC1 層ラーメン橋脚への適用性を検討したが、今後 は、他の地震動やより広範な固有周期帯域に属 する多くの橋脚を対象に解析を行う必要がある。 また、定義2を採用した場合にも、図-8に示す 橋脚Sの柱4の曲げモーメント-曲率関係のよう に、幾つかの塑性ヒンジ領域には、座屈発生時 曲率を大きく超過した曲率が作用している。 RC ラーメン橋脚では、設計上の終局状態を超える

曲率が作用しても、橋脚としては急激に水平耐 力が低下しないとの実験的検証に基づき、幾つ かの塑性ヒンジ領域には、過大な曲率の作用を 許容している¹⁾。本解析で用いた手法により、 軸方向鉄筋の座屈による耐力低下量までも、実 験結果を定量的に再現できることを確認してい るが、個々の塑性ヒンジ領域の損傷と、ラーメ ン橋脚としての荷重-変位関係の関わりについ ては、地震後の復旧の観点も含め、今後詳細に 検討していく必要がある。

なお図-7では、8秒以降の応答において、橋 脚Rと橋脚Sで差が生じており、RC的断面を有 する橋脚Rでは、座屈発生以降の耐力低下の影 響が見られるが、最大応答塑性率などは、両者 ほとんど同じ値である。これは、今回用いた地 震力レベルでは、僅かに耐力低下する程度の塑 性変形として定義される許容塑性率より小さい 応答しか生じないためである。しかし、終局変位 が生じる程度の地震力を受けた場合には、図-5や図-6に示すプッシュオーバー解析結果から も、両者の挙動は相違すると予想される。今後、 想定以上の地震力を受けるSRCラーメン橋脚の 地震応答性状についても検討を行い、SRC構造 の耐震性能をより詳細に把握していきたい。

4. まとめ

断面に占める鉄筋量と鉄骨の鋼材量を変化さ せた2つのSRC1層ラーメン橋脚の面内方向を対 象としたプッシュオーバー解析を行い、ラーメン 橋脚としての降伏点および終局点を定義した。 また、エネルギーー定則を用いることで推定され るSRCラーメン橋脚の弾塑性地震応答変位は、 動的解析結果に対して安全側に評価されている ことを確認した。そして、定義2に従う終局変 位に対して道路橋示方書と同じ安全係数を用い て算定した許容塑性率以下となるようにSRC1 層ラーメン橋脚を耐震設計すれば、軸方向鉄筋 の座屈により耐力低下を呈するRC的断面を持 つ橋脚Rであっても、SRC的断面を有する橋脚 Sと同程度の損傷状態に留めることができるこ

図-8 曲げモーメント-曲率関係(橋脚S, 柱4)

とを確認した。

参考文献

- 日本道路協会:道路橋示方書・同解説 耐震設 計編, 1996.
- 2)村田二郎監修:鉄骨鉄筋コンクリート土木構造
 物の設計,オーム社,pp.198-219,1976.
- 加藤大介:鉄筋コンクリート部材の主筋の座屈 性状に関する研究,日本建築学会構造系論文報 告集,第436号,pp.135-143,1992.6
- 4) 星隈順一,川島一彦,長屋和宏:鉄筋コンクリート橋脚の地震時保有水平耐力の照査に用いるコンクリートの応力-ひずみ関係,土木学会論文集,No.520/V-28, pp.1-11, 1995.8
- R.Park, M.J.N Priestley, Wayne D. Gill: Ductility of Square-Confined Concrete Columns, Journal of the Structural Division, ASCE, Vol.108, No.ST-4, pp.929-950, 1982.4
- 6) 村山八洲雄ほか:交番繰り返し荷重下における
 柱筋の座屈モデル,鹿島技術研究所年報,第42
 号, pp.93-98, 1994.10
- 7) 鈴木敏郎,元結正次郎,内山政彦:鉄骨コンク リート部材の曲げせん断応力下における塑性変 形能力に関する研究,日本建築学会構造系論文 集,第484号,pp.141-148,1996.6
- 8)鉄道総合技術研究所:鉄道構造物等設計標準・ 同解説 鋼とコンクリートの複合構造物,1998.
- 9)例えば、土田貴之、御園生静栄、佐々木拓也:等 橋脚を有するコンクリートラーメン橋のプッシュ オーバーアナリシスに関する研究、第2回地震時 保有耐力法に基づく橋脚の耐震設計に関するシ ンポジウム講演論文集、pp.25-32, 1998.12