論文 高強度材料を用いた鉄筋コンクリート柱の曲げせん断実験

丸田 誠*1・木村 暁子*2

要旨:50 階程度の超高層 RC 建物の下層階柱には大きな長期軸力が作用し, さらに外柱には 地震時に転倒モーメントにより大きな変動軸力が生じるため、階数が増えるにつれて軸耐力 の高い,高強度な RC 部材が必要とされる。そこで,高強度材料(コンクリート:Fc100N/mm², 高強度主筋:SD685,高強度横補強筋:SD785)を組み合わせた RC 柱の構造特性の把握を目的 とした実験を行った。試験体の実験因子はせん断スパン、軸力、横補強筋比 Pw、加力方向と した。実験の結果、全ての試験体で曲げ降伏後の軸圧壊が観察された。各試験体の靭性能は、 横補強筋比 Pw が増加すると上昇した。また、コンクリートの拘束効果を考慮した断面曲げ 解析で、実験結果の最大耐力を精度よく評価できた。

キーワード:高強度材料,高軸力,変動軸力,曲げ,せん断

1. はじめに

超高層 RC 建物の下層階柱には大き な長期軸力及び地震時の転倒モーメン トによる変動軸力が作用するため、よ り高強度な材料を用いた高強度 RC 部 材が求められている。そこで超高層 RC 建物の下層階柱を対象とした、高強度 コンクリート (Fc100N/mm²) と高強度 主筋 (SD685), 高強度横補強筋 (SD785)を組み合わせた柱の構造実 験を行い、高強度鉄筋コンクリート柱 Ag:主筋断面積, ay:主筋降伏強度 *1:45度方向加カ *2:0.2%オフセット値 の構造性能を確認したので報告する。

2. 試験体および実験方法

試験体は最下階外柱を対象に3体(LE),一般 下層階外柱を対象に2体(SE),最下階内柱を対 象に2体(LI)の計7体とし、縮尺は実物の約1/3 とした。表-1に試験体一覧を示す。代表的な最 下階外柱(LE7)の試験体形状・配筋と、45 度方 向加力の LE10-45 の柱断面図を図-1 に示す。こ こで最下層は M/QD(せん断スパン比)=2.5, 一般 下層階は M/QD=1.5 とした。コンクリートは設 計基準強度(Fc) 100N/mm²で共通とし,主筋には

表-1 試験体一覧

						Pw	使用材料	コンクリート	コンクリート	
	刈-ス	名称	断面	MQD	軸力		呼び強度・実験値	圧縮強度	ヤング係数	
	L					%	N/mm ²	N/mm ²	kN/mm²	
		LE7				0.7		112	36.6	
外	LE	LE10	[n]	2.5 最下陸	0.75tNu	1.0	コンクリートFc=100	114	37.8	
桂		LE10-45*1			~	1.0	鉄筋	113	38.1	
	ee.	SE7	300	1.5	0.7cNu	0.7	主筋D19-SD685	116	37.4	
	30	SE10		下層階		1.0	σy=722	119	37.9	
内柱		1.0			0 3cNu	0.0	補強筋	106	25.2	
	LI		\mathbf{F}	2.5 最下階	0.50140	0.3	D6-SD785	100	33.2	
		LI12	300		0.6cNu	1.2	σy=1053* ²	115	37.4	

 $cNu = 0.85Fc(bD - \sum Ag) + \sum Ag \cdot \sigma y$, $tNu = \sum Ag \cdot \sigma y$

SD685(D19), 横補強筋は円フープと角フープの 組み合わせとして SD785(D6)を用いた。外柱に は芯筋 SD685(D19)も配している。試験時コンク リート圧縮強度と鉄筋の降伏強度を合せて表-1 中に示す。実験因子はせん断スパン、軸力、横 補強筋比 Pw, 加力方向とした。45 度方向加力 のLE10-45 試験体を含む外柱試験体は変動軸力 下(0.75tNu~0.7cNu, cNu: 柱の圧縮軸耐力, tNu:柱の引張軸耐力)の実験を行った。内柱試 験体は一定軸力下(0.3cNu, 0.6cNu)の実験を 行った。

軸力と曲げモーメントの載荷ルールを図-2

*1 鹿島建設(株)	技術研究所	建築技術研究部	博士(工学)	(正会員)
*2 鹿島建設(株)	技術研究所	建築技術研究部	修士(工学)	(正会員)

図-1 試験体配筋図

に示す。全ての試験体で部材角 R=1.25, 2.5, 5, 10, 20, 40×10⁻³rad を目標に変形制御での繰返 し載荷を行った。外柱では、長期軸力(0.2cNu) を作用させた後, 圧縮軸力側では M-N 関係上 で軸力 0.7cNu 時に 0.5Mu (Mu:曲げ終局モー メント)になる点,引張軸力側では軸力 0.75tNu 時に Mu に達する点を目指し、曲げモーメント に比例する変動軸力を加えた。ただし圧縮軸力 の上限は 0.7cNu まで,引張軸力の上限は 0.75tNu までとした。これ以降,外柱では変動軸 力載荷の際に圧縮側を正に引張側を負の載荷と して記す。

全ての試験体で軸方向力が極端に低下した時 点かもしくは軸破壊した時点で実験を終了した。

3. 実験結果

3.1 荷重-部材角関係

実験結果の諸耐力一覧を表-2 に, また, 図-3 に各試験体の曲げモーメント-部材角関係を示 す。図-3 中に, P-Δ効果を考慮した場合の軸と, P-Δ効果を考慮した ACI ストレスブロック法²⁾ による曲げ耐力を示す。外柱の実験(LE,SE)では, 引張軸力が作用した際に, 圧縮側より小さな変 形で引張側に先に曲げひび割れが生じた。せん 断ひび割れも引張側では, 曲げ引張に伴う斜め ひび割れとなる。一方圧縮側では, 曲げひび割 れは, 最大耐力近傍で局部的に小さく生じた。 このように, 引張側と圧縮側ではひび割れの発 生状況が大きく異なった。

なお, 圧縮側の曲げひび割れは Pw が大きい 方が高い荷重で生じた。また, 横補強筋は全て の試験体で円フープのほうが角フープより先に 降伏した。

表-2, 図-3 に示すように, M/QD=2.5 で変動 軸力下の LE シリーズでは各試験体間で最大耐 力,最大耐力時の変形とも大きく異ならないが, その後の靭性能は大きく異なる結果となった。

	· · · · · ·				初期ひ	び割れ				±	筋			#+	(耐力) R 8.4 9.2 8.9 7.5
	試験体名	曲げ	(正)	曲げ	(負)	せん割	f (正)	せん断	i (負)	圧縮	降伏	10,111,711,			
		M*2	R*3	M	R	M	R	M	R	М	R	М	R	Μ	R
	LĒ7	377	8.4	-42	-0.6	298	8.7	-99	-8.0	280	3.4		—	377	8.4
ы	LE10	391	9.7	-46	-1.0	391	9.7	-62	-3.6	353	4.3	304 ⁰	26.2	393	9.2
ント 井	LE10-45	412	9.5	-46	-0.5	412	9.5	-65	-3.5	179	2.5	393 ^O	27.8	415	8.9
	SE7	349	7.6	-48	-1.3	350	5.6	-73	-4.3	334	6.4	273 ^O	13.3	361	7.5
	SE10	419	7.9	-48	-1.2	419	7.9	-70	-4.0	364	4.7	3610	17.1	419	7.9
内	L19	213	2.5	-205	-2.1	313	4.6	-370	-5.8	394	8.7	-3190	-12.0	456	24.7
柱	L112	374	3.9	-464	-7.6	385	7.0	-464	-7.6	410	6.6	-412 ^O	-18.9	455	16.7

表-2 実験結果一覧(P-⊿効果無視)

*1 〇: 円フープ降伏 *2 M:危険断面の曲げモーメント(kN·m) *3 R:部材角(×10⁻³rad)

LE7 は部材角 R=10×10⁻³rad 時で最大耐力に 達した後, R=20×10⁻³rad に向かう途中で軸圧縮 破壊が生じた。一方、LE10、LE10-45 では、R=20 × 10⁻³rad まで安定した挙動を示した。 M/OD=1.5 で変動軸力下の SE シリーズでも Pw の違いの影響が大きく出ている。SE7 に比べ SE10 では 16%最大耐力が高く, 靭性能も大きく 異なった結果となった。SE7 では R=12×10⁻³rad 程度で軸力が保持できなくなり破壊したが. SE10 では R=20×10⁻³rad まで耐力低下があまり 生じない良好な性状を示した。M/OD=2.5 で一 定軸力下の LI シリーズでは、試験体間で最大耐 力は異ならないが、最大耐力時の変形、その後 の靭性能は軸力と Pw の違いの影響を受け大き く異なった。一定軸力 0.3cNu の LI9 では最終の R=95×10⁻³rad まで耐力低下がほとんど生じず, エネルギー吸収能のある良好な履歴形状を示し た。一方, 高軸力 0.6cNu の LI12 では大変形 R=40

×10⁻³rad時に紡錘形に近い大きな履歴ループを 描いたが、その繰り返し途中で急激に軸破壊し た。

各試験体とも曲げ変形やせん断破壊といった 明快な形式では破壊せず、コンクリートの圧壊 と軸方向主筋の座屈が同時に生じ耐力低下を生 じた。フープが破断して急激な軸破壊をしたも のもあった(LE7, SE10, L112)。

3.2 M-N 関係と実験結果との比較

図-4 に各試験体の M-N 関係図と実験の最大 耐力をプロットして示す。また, M-N 曲線は表 -1 の材料強度から ACI のストレスブロック法 ²⁾を用いて求めた。ここでの実験の最大耐力は P-Δ効果による部材の耐力上昇を補正しない値 としたが,全ての試験体で計算上の曲げ耐力よ り大きな曲げ耐力となった。

3.3 軸方向ひずみ関係

図-5 に各試験体の軸ひずみと部材角の関係

を示す。圧縮側の軸ひずみをマイナス(-)で 表す。外柱のLE,SEでは各試験体とも引張軸 力下の性状は,部材角R=10×10⁻³rad程度まで は直線であり,M/QDの違いによらず部材角と 軸ひずみの関係は各試験体とも,ほぼ同様にな った。圧縮側では若干非線形となるが,Pwが 多いLE10やSE10では部材角Rにほぼ比例し ていることが分かる。一定軸力のLI9とLI12 では,作用軸力が異なり横補強筋量も異なるた め軸ひずみ性状が大きく異なっている。LI9で はR=50×10⁻³radの大変形時に軸ひずみが0.3% から増加するのに対し,LI12では軸ひずみが 1.3%の後に急増しており,図-3と合せてみると LI12 は軸方向につぶれながら大変形時に軸抵 抗が低下し,破壊に至ったことが分かる。

3.4 補強筋のひずみ分布

図-6 に横補強筋のひずみ分布を示す。図-6 中の〇,●,●は円フープのひずみを□,■, ■は角フープのひずみを表し,外柱の LE, SE は最大耐力近傍の R=10×10⁻³rad 時(〇,□) と破壊近傍の R=20×10⁻³rad 時(〇,■)につ いて,内柱の LI は R=20×10⁻³rad 時(●,■)につ いて,内柱の LI は R=20×10⁻³rad 時(●,■) と R=40×10⁻³rad 時(●,■)について示す。 ただし,SE7 では,最終でも R=12×10⁻³rad の変 形にしか到達しなかったので,この時点でのひ ずみ分布とした。全ての試験体で,危険断面位 置(①)でのひずみよりヒンジゾーンに入った 位置(②)のひずみの値の方が大きい結果とな った。また,同じ位置の円フープと角フープの ひずみ値は大きく異ならない。最大耐力近傍の R=10×10⁻³rad では、LE の全試験体で横補強筋 のひずみが最大 2000 μ 程度であるのに対し、SE では 5000 μ を越えている。これは SE のせん断 スパン比が LE に比べて小さく、ヒンジゾーン に生じたせん断ひび割れの影響が強く表れたた めと推察される。LE では R=20×10⁻³rad の破壊 近傍でも最大 5000 μ 程度であった。LI では R=20×10⁻³rad 時にひずみは 5000 μ 程度で、 R=40×10⁻³rad 時にひずみが降伏近傍まで達 する。図-5 の軸ひずみ性状と併せると、L112 で は 0.6cNu の高軸力下でもコンクリートが横補 強筋で十分に拘束されていることが分かる。

4. 考察

4.1 最大耐力の検討

○円フープ(R=10×10⁻³rad)

表-3 に既往の計算式と実験で得られた最大 耐力との比較を示す。コンクリート強度には材 料試験結果を用い、AIJ⁵¹せん断耐力算出時のコ ンクリートの圧縮強度有効係数 v_0 は CEB 式³¹ を用いた実験値は、直接計測した値と P- Δ 効果 を考慮した値の両方を示す。各試験体とも ACI の曲げ耐力は実験値よりも小さい結果となった。 P- Δ 効果を考慮した実験耐力はさらに計算値と の差が大きくなる。AIJ 付着強度計算値も実験 結果に比べかなり小さい値となる。実験状況か らは、かぶりコンクリートが全て剥離した後も

□角フープ(R=10×10⁻³rad)

耐力は上昇しており,軸力によりコンクリート が膨張し横補強筋に拘束効果が発生することに より,拘束筋内の鉄筋とコンクリート間の付着 が健全に保たれるため,せん断力を伝達できた と考えられる。高強度材料を用いた部材におけ る高軸力下の付着強度に関しては今後の課題で ある。

せん断耐力は降伏ヒンジの発生する部材の保 証変形角を最下層(LE,SE シリーズ)では Rp⁵⁾=0.02,一般階(SE シリーズ)では Rp=0.01 として計算した。P-Δ効果を考慮した実験耐力 は計算値を全ての試験体で上回った結果となっ た。せん断算定式で軸力の効果を考慮できる NewRC式⁴⁾を参考として示したが非ヒンジ部材 とした時の値であり AIJ 式⁵⁾に比べてかなり大 きい値となった。

4.2 拘束コンクリートを考慮した曲げ耐力

変形成分に占める曲げ変形成分の割合が大き かったため、曲げ耐力の検討を行う。まず、横 補強筋の拘束効果がコンクリートの材料特性に 与える影響を調べ、次に拘束コンクリートを用 いた曲げ詳細解析を行う。既往の拘束コンクリ ートを扱った一軸圧縮性状の文献^(5)~8)から、 横補強筋量による各試験体のコンクリートの一 軸圧縮強度上昇をまとめ表-4に示す。各式の比 較から、六車式は若干小さめの評価を与える結 果となったが、他は同程度の値となっている。 表-5 に実験結果、ACIのストレスブロック法の 結果,拘束コンクリートを考慮しないファイバ 一解析結果および鈴木らの提案式で求めたコン クリートの特性を用いたファイバー解析結果を 示す。ACI 法では,そのストレスブロック形状 の仮定や最外縁ひずみを 0.3%と設定すること が高強度コンクリートでは適切ではないことが 分かる。平面保持を仮定したファイバー解析の 結果は ACI 法よりも実験結果に近い値となり, 拘束コンクリートの効果を考慮すると更に,良 好な対応を示すことが分かった。

4.3 スケルトンカーブの検討

図-7 に LE10,SE10,LI12 3 試験体の P- △効 果を考慮した実験荷重変形関係とスケルトンカ ーブ計算値を比較し示す。ここでスケルトンカ ーブはトリリニアとし,弾性剛性,曲げひび割 れ点,菅野の剛性低下率と鈴木式で拘束効果を

表-4 拘束効果を考慮したコンクリート圧縮強

度計算值								
試験体 名	$\sigma_{\rm B}$ (N/mm ²)	六車 ⁷⁾	崎野")	修正 K-P ⁷⁾	中塚 8)	鈴木の		
LE7	112	117 (1.05)	120 (1.07)	122 (1.09)	116 (1.03)	124 (1.10)		
LE10	114	122 (1.07)	126 (1.11)	129 (1.13)	122 (1.07)	129 (1.13)		
LE10-45	113	121 (1.04)	125 (1.07)	128 (1.09)	121 (1.08)	128 (1.10)		
SE7	116	121 (1.04)	124 (1.07)	126 (1.09)	118 (1.02)	128 (1.10)		
SE10	119	127 (1.07)	131 (1.10)	134 (1.13)	122 (1.03)	135 (1.13)		
L19	106	113 (1.06)	116 (1.10)	119 (1.12)	116 (1.09)	120 (1.13)		
LI12	115	124 (1.08)	129 (1.12)	132 (1.15)	124 (1.07)	132 (1.14)		

Ā/#	中静体
試験体名 ACI曲げ ²⁾ AIJ せん断 ⁶⁾ New RC せん断 ⁴⁾ AIJ 付着 ⁵⁾	— 夫获禮 M(kN·m)
$\underline{M_{ACI}(kN \cdot m)} \qquad \underline{M_{S}(kN \cdot m)} \qquad \underline{M_{NRC}(kN \cdot m)} \qquad \underline{M_{BOND}(kN \cdot m)}$	IVIBMAX(KIN III)
1 F7 345 297 563 301	377
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[433] *3
LE10 356 424 709 334	392
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[458]
1 F10 45 350 424 709 332	415
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	【461】
SE7 366 288 459 184	361
(0.98) [1.08] (1.25) [1.37] (0.79) [0.86] (1.97) [2.15]	[395]
SE10 381 381 541 205	419
<u>31.10</u> (1.10) [1.48] (0.95) [1.47] (0.77) [1.04] (1.77) [2.75]	[562]
456 381 491 309	456
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[534]
432 508 745 345	445
L112 (1.05) [1.25] (0.90) [1.06] (0.60) [0.73] (1.32) [1.57]	[541]

表-3 最大耐力の実験値と拘束効果を考慮しない計算値との比較

*1 ():最大耐力(P-Δ効果無)/計算値 *2 []:最大耐力(P-Δ効果有)/計算値

*3 【 】: P-Δ効果を考慮した最大耐力

評価したファイバー解析曲げ耐力計算値を用い て示した。ひび割れ点もファイバー解析で求め た。せん断の影響も考慮するため AIJ 終局指針 の Rp を変化させたせん断強度-Vu も図中に示 す。本評価法によるスケルトンカーブで実験結 果を良好に表せることが分かった。

6. まとめ

高強度鉄筋コンクリート柱の曲げせん断実験 を行い以下の結果を得た。

表-5 拘束効果を考慮した曲げ耐力の比較

封除休夕	M	M _{BMAX} / M					
ALL 400 PP 12	IVIBMAX	M _{ACI}	M _{FIB}	_c M _B			
LE7	433	286(1.51)	350(1.24)	408(1.06)			
LE10	458	292(1.57)	359(1.28)	427(1.07)			
LE10-45	461	243(1.90)	314(1.47)	407(1.13)			
SE7	395	298(1.33)	369(1.07)	423(0.93)			
SE10	562	308(1.82)	384(1.46)	447(1.26)			
LI9	541	380(1.42)	412(1.31)	473(1.14)			
LI12	455	348(1.31)	407(0,97)	421(1.08)			

図-7 復元力特性比較

- (1) いずれの試験体も,最終的には高軸力下で 軸力を保持できなくなり軸圧壊が生じた。
- (2) 軸力比が小さな試験体、横補強筋の多い試験体ほど靭性能に優れていた。また、0.6cNu 程度の高軸力下でも高強度せん断補強筋で 十分拘束すれば R=20×10⁻³rad 程度までは安 定した挙動を示した。
- (3) 45 度加力の試験体は平行加力の試験体と同 様の荷重-変形関係を示した。
- (4) 最大耐力はすべての試験体で ACI のストレ スブロック法で算出した値を上回った。横 補強筋比 Pw が少なく,曲げ降伏後のせん断 破壊を想定した LE7, SE7 試験体でも最大耐 力は AIJ 終局指針のせん断耐力以上となり, この式では安全側の評価となる。また,す べての試験体の最大耐力は AIJ 終局指針の 付着耐力を大きく上回った。
- (5) 横補強筋の拘束効果を既往の鈴木らの提案 式で算出したコンクリートの材料特性を用 いたファイバーモデル曲げ解析で求めた耐 力は実験耐力を精度よく評価できた。
- (6) 変動軸力を考慮したスケルトンカーブで, 実験結果とよく一致した。

参考文献

- 1) 丸田, 別所; 高強度材料を用いた R C 柱の弾 塑性挙動, コンクリート工学年次論文報告集 14-2, pp.81~86, 1992.
- 2)American Concrete Institute ; Building Code and Commentary ACI 318-95/318R-95, 1995.
- 3)日本建築学会;鉄筋コンクリート造建物の靭 性保証型耐震設計指針・同解説,1999.
- 4)(財)国土開発技術研究センター; New RC研 究開発概要報告書, 1993.5.
- 5)日本建築学会;鉄筋コンクリート造建物の終 局強度型耐震設計指針・同解説,1990.
- 6)日本建築学会鉄筋コンクリート構造運営委員 会靭性設計小委員会、靭性設計小委員会報告 書(終局強度型耐震設計法に関連する最新の 研究成果)、1992.8.
- 7) 中塚,阪井他;コンファインドコンクリート の強度・変形推定式,日本建築学会構造系論 文集, No.505, pp.93-99, 1998.3.
- 8) 丸田, 鈴木; 円フープと角フープ組み合わせ RC 柱の軸圧縮性状の検討, コンクリート工学 年次論文報告集 17-2, pp.381~386, 1995.
- 9) 鈴木,井上他;フィバーモデルによる RC 短 柱十字形部分骨組の解析,コンクリート工学 年次論文報告集 15-2, pp.577~582, 1993.