論文 物質移動を考慮した RBSM によるひび割れ進展解析手法の開発

野城 良祐 *1・石川 靖晃 *2・中村 光 *3・田邉 忠顕 *4

要旨:本論文では,不連続体力学に基づいた解析手法である剛体-バネモデルに,トラスで モデル化を行なった物質移動を直接考慮できる手法を統合し,新たなひび割れ進展解析手法 の開発を行なった。開発した手法によりコンクリートの自由乾燥収縮解析と一軸拘束ひび割 れ解析を行ない,拡散問題によるひび割れ進展と,ひび割れが拡散問題に及ぼす影響を同時 に取り扱うことが可能であることを示した。

キーワード:物質移動, RBSM, 乾燥収縮, ひび割れ進展, 拡散方程式

1. はじめに

近年,コンクリート構造物への耐久性向上の ニーズが高まり,100 年単位での供用が望まれ るようになった。そのためには乾燥,温度など によって生じる初期応力に起因するひび割れ進 展と,ひび割れが構造物の耐久性ならびに安全 性に及ぼす影響を,解析上でより現実的に捉え る必要がある。

物質移動に起因する初期応力によるひび割れ 進展解析としては、ひび割れ幅や、深さを評価 するために、離散ひび割れモデルを用いた有限 要素解析が行なわれている。しかし、離散ひび 割れモデルは、その特性から多くの解析上の制 限を有し、構造解析としては、必ずしも一般的 でない。一方、物質移動に関しては、コンクリ ート内部のみでなく、ひび割れ間の物質移動も 考慮することが重要となる。

そこで、本研究では、ひび割れを離散的に評価し、ひび割れの発生・進展状況を直接表現で きる剛体-バネモデル(以下、RBSM)による構 造解析と、一次元のトラス間で物質移動が行な われると仮定したトラスモデルによる物質移動 解析を統合した解析手法を開発した。そして、 水分拡散問題を、解析例として取り上げ、開発 した解析手法の可能性を検討した。 2. 解析手法

2.1 コンクリートの構造解析

(1) 剛体-バネモデル

本研究では、コンクリートの構造解析手法と して、ひび割れ進展等の不連続現象を直接表現 できる RBSM を用いた¹⁾。

RBSMでは、コンクリートのひび割れをバネ の破壊によって表現するため、ひび割れは要素 境界辺上に沿って発生する。このため、ひび割 れの発生・進展がコンクリートの要素分割に大 きく依存する。そこで図ー1に示すように、計 算幾何学の概念である Voronoi 多角形分割によ り、構造物をランダムな要素に分割し、ひび割 れの要素依存性を低減した。また、Voronoi 分 割されたコンクリート要素は3自由度を持つ剛 体と仮定し、要素の境界辺上に垂直バネ(k_n) および、せん断バネ(k_s)を設けた。バネ定数 には、コンクリートの弾性係数 E を二要素間 の母点間距離 h で除したものを与えた。

*1名古屋大学大学院 工学研究科土木工学専攻(正会員) *2名城大学助教授 理工学部建設システム工学科 工博(正会員) *3名古屋大学大学院助教授 工学研究科土木工学専攻 工博(正会員) *4 名古屋大学大学院教授 工学研究科土木工学専攻 工博 (正会員) (2) コンクリートの材料モデル

コンクリートの材料モデルは, 垂直バネに圧縮, 引張挙動, せん断バネにせん断すべり挙動をモ デル化した。

本研究は、ひび割れ進展を解析対象としたた め、圧縮領域では $\mathbf{2}$ に示すように弾性とし た。引張領域では、引張強度 f_t までは弾性とし、 その後は引張破壊エネルギー G_f によって軟化 勾配を変化させる 1/4 モデルに従って応力を低 減させた。本研究では、引張破壊エネルギー G_f を 0.1N/mm と一定の値を用い、除荷は原点指 向型とした。

せん断バネについては、コンクリートのせん 断伝達機構のモデル化を行なった。図-2に示 すようなモール・クーロン型の破壊基準を用い て、降伏後は塑性流れ則に従い、終局せん断ひ ずみに達するまで降伏曲面上を移動するものと した¹⁾。ただし、ひび割れの開口に伴うせん断 剛性の低下を表現するために、ひび割れ幅に対 して線形的にせん断剛性を低下させた²⁾。

2.2 物質移動解析

(1) トラスモデル

物質移動解析は、トラスモデルにより行なっ た。ここで、Voronoi 分割を行なった RBSM 解 析では、一次元のバネを Voronoi 多角形上に配 置することでマクロの挙動を追っている。これ と同様の着想で、図-3 に示すように、各 Voronoi の母点を結ぶトラスネットワークを考 え、各トラスは、Voronoi 要素の辺長に対応し た面積を持つとした。トラスモデルは、一次元 の拡散方程式を考えるだけでよく、簡易に物質 移動解析を行なうことが可能となる。

(2) 拡散方程式

本研究では物質移動の一例として,水分拡散 問題を取り扱う。水分拡散の基礎方程式³は以 下のように与えられる。

$$\frac{\partial R}{\partial t} = \nabla \left(D \nabla R \right) \tag{1}$$

ここで,**R**:相対含水率,**t**:時間,**D**:水分伝 導率である。これを初期条件と以下の境界条件 のもとに解けばよい。

$$\frac{\partial R}{\partial n} + \alpha_m \left(H_s - H_o \right) = 0 \tag{2}$$

ここで, n:乾燥面の法線ベクトル, α_m:水分 伝達率, H_s, H_o:乾燥表面および雰囲気の相対 湿度である。

水分拡散問題は,水分伝導率を相対含水率の 関数として,非線形解析を行なうことが一般的 であるが,本研究の主題が新たな解析手法の提 案を目的としていることから,Dは簡単に相対 含水率に拠らず一定と仮定した。同様の理由よ り,RとHの関係もR=Hとした。

トラスモデルでは,式(1)の偏微分方程式を 式(2)の境界条件で離散化すると以下のように なる。

$$\frac{AD}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} + \frac{1}{\varpi} \frac{AL}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \overline{R_1} \\ \overline{R_2} \end{bmatrix} + \alpha_m A \begin{bmatrix} R_1 - R_0 \\ R_2 - R_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(3)

ここで、 R_1, R_2 :初期条件、A:トラス要素の 面積、L;トラス要素の長さ、である。式(3) において注意しなければならない点は、本研究 では、上記の式に新たな係数 ω を第二項に付け

- 468 -

加えたことである。図-3 のようにトラスを考 え, Voronoi 要素の辺長によりトラスの断面積 与えた場合,対象としている構造物の容量より も全トラス要素の容量が大きくなってしまう。 そこで,容量を換算する係数ωを与えることに より,各トラスの容量と実際の構造物の容量を 一致させた。ωを容量換算係数とし,全トラス 要素に対し,以下のように与えた。

$$\varpi = \frac{\sum_{i=1}^{n} A_i \cdot L_i}{V_{real}}$$
(4)

ここで、n:トラスの全要素数、A_i:各トラスの断面積、L_i:各トラスの長さ、V_{real}:対象構造物の体積、である。容量換算係数は一次元トラス配置では 1、二次元トラス配置では原則的に2となる。

最終的に式(3)をクランク・ニコルソン法に て差分を取ることで解を得た。

(3) 解析手法の妥当性の検証

解析手法の妥当性を検討するために,JCI マ スコンクリートの温度応力研究委員会が開発し た温度応力解析のための有限要素法プログラム JCMAC と比較を行なった。

水分拡散方程式は熱伝導の非定常解析と同形 式であるため,係数を温度解析用に改めて解析 を行なった。表-1,図-4 に解析条件ならび に、メッシュ分割を示す。図-5 に容量換算係

表一1 温度解析条件

数を考慮に入れた(ω=2)場合と、考慮に入れ ない(ω=1)場合での温度の経時変化を示す。 これによると、B点(深さ 2m)において温度の 経時変化に若干違いが見られるが、おおむねー 致する。一方、容量換算係数を考慮に入れない 場合は熱容量を過大に評価し、温度の低下を妥 当に表現することができない。以上により、ト ラスモデルで拡散問題をとり扱うことが可能で あることが示された。

 2.3 物質移動を考慮した RBSM によるひび 割れ進展解析

(1) 拡散 – 応力の連成問題

トラスモデルによりコンクリート中の相対含 水率の変化を求め、相対含水率と自由乾燥収縮 ひずみは線形の関係であると仮定して、自由乾 燥収縮ひずみを以下の式より求めた。

$$\Delta \varepsilon_n = \alpha_{sh} \Delta R \tag{5}$$

ここで ε_n :自由乾燥収縮ひずみ、 α_{sh} :収縮係数、 ΔR :相対含水率変化、である。そして、 ε_n を RBSM における垂直バネの初期ひずみとし、 RBSM により初期外力を求め、初期応力問題と して、構造解析を行なった。

(2) ひび割れの間の物質移動

コンクリート中にひび割れが存在すると,外 気条件がひび割れ中まで浸入し,ひび割れを通 しての物質移動が行なわれる。

これらの影響を考慮するために,図-3 に示 すトラスモデルを図-6 に示すように,剛体辺 上にもトラス要素を持つモデルに拡張し,ひび

- 469 -

割れ間での物質移動を考慮することとした。こ こで、剛体辺上のトラス要素は、ひび割れ発生 以前は面積を0とし、このトラスを通じての物 質移動は起こらないと仮定した。ひび割れ発生 後は RBSM では、ひび割れ幅が剛体要素間の 相対変位として直接得られることから、その相 対変位に奥行きを乗じた面積をトラス要素に与 えた。また、水分拡散係数は、コンクリート中 とは異なる値を仮定することにより、直接ひび 割れ間での物質移動問題を考慮できるようモデ ル化した。

3. 解析結果

3.1 解析概要

図-7 に示す 100×100×600mm のコンクリ ート供試体の自由乾燥収縮解析(以下,自由解 析)と,一軸拘束ひび割れ解析(以下,拘束解 析)を行ない,提案した解析手法の妥当性なら びに,適用性の検討をした。

供試体は、二次元で 1000 要素に分割してモ デル化を行なった。解析に使用した材料諸元を **表-2** に示す。ひび割れ間の水分伝達率につい ては、参考とする値がなかったため、解析例を 示すために大きめの値を仮定した。供試体は、 水分伝導率を変化させた2種類を設定した。

構造解析の境界条件は,自由解析,拘束解析 ともに供試体下部の垂直方向変位を固定した。 拡散解析の境界条件は,自由解析では全面湿度

条件とし、拘束解析では側面を湿度条件とした。

自由解析は A1, A2 供試体で解析を行ない, 拘束解析は A1 供試体のみで,拘束率を 0%, 40%, 80%の 3 種類に変化させた。拘束は上下 端部のみで供試体と結合した拘束筋要素を設置 して表現し, コンクリート供試体と拘束筋の剛 性比を拘束率とした。

解析期間は 200 日とし,初期条件は相対含水 率 100%を与えた。外気条件は湿度を 80 日ま では 80%で一定とし,それ以降は 200 日まで に 40%まで線形的に減少させた。

3.2 自由乾燥収縮解析

図-8 に自由解析での A1, A2 供試体の全 ひずみの経時変化を示す。初期段階では,外部 との湿度差が高いため急激に収縮ひずみが進行 する。材齢 80 日前後で供試体の内部まで拡散 が進行し,外気との平衡状態に近づくため,ひ ずみ増分が減少する。80 日以降は外気の湿度 が一定値から減少していき,再び外気との不平 衡状態が続き収縮ひずみが進行する。ひずみ量 は,水分伝導率の高い A2 供試体の方が A1 よ りも大きいことがわかる。図-9 に材齢 40 日

	A1	A2
引張強度 ft(MPa)	3.5	
弾性係数 E(MPa)	$2.38 imes 10^{4}$	
水分伝導率 D(cm²/day)	0.1	0.3
水分伝達率a _m (cm/day)	3.0	
収縮係数α _{sh}	0.001	
ひび割れ間の水分伝導率	1000	1000
D _{cr} (cm ² /day)	0	

での A1 供試体の内部状態を示す,図から相対 含水率の分布の違いにより,引張応力が表面に 均一に生じていることがわかる。

水分伝導率の低い A1 供試体では 140 日以降 に表面にひび割れが若干生じた。これは, A1 供試体は水分伝達率と水分伝導率の差が大きい ため相対含水率分布の差が大きく, A2 より大 きい内部拘束応力が作用するためである。図-10 に両供試体中央断面内の垂直応力分布を示 す。図から 40 日, 80 日, 160 日の材齢におい て A1 供試体の方が大きい内部拘束応力を受け ていることがわかる。また, 材齢 80 日での両 共供試体の応力分布は, 他の材齢に比べ内部拘 東応力が小さい。これは材齢 80 日では平衡状 態が進み供試体内の相対含水率の差が少ないた めである。これらの結果より, 提案した解析手 法が自由乾燥収縮での挙動を妥当に評価してい ることがわかる。

3.3 一軸拘束ひび割れ解析

図-11 に拘束解析より得られた拘束筋の全 ひずみの経時変化を示す。図からわかるように、 拘束率が高いほうが早い段階で貫通ひび割れが 発生し、収縮ひずみも小さい。貫通ひび割れが 発生すると拘束筋の応力が解放され、ひずみは ほぼ0となる。

図-12 に供試体左部の表面ひび割れ幅の経時変化を示す。表面ひび割れ幅は,ひび割れの 発生による応力解放にともなう拘束筋の弾性回 復変形とコンクリート供試体の弾性回復変形

(収縮)として現れるため⁴⁾,拘束の低い方が 大きくなる傾向を示すことが知られている。そ のような傾向を本解析が妥当に再現しているこ とがわかる。

図-13 に図-11 の A~C に示した,拘束率 40%の貫通ひび割れ発生前,発生直後,材齢 200 日での,ひび割れ図と相対含水率を示す。 図からわかるように,明確な貫通ひび割れが発 生し,ひび割れの開きが大きくなるとともに, ひび割れ周辺から乾燥が進展する挙動を,本解

図-10 断面内の垂直応力分布

析により表現可能となることがわかる。なお, 供試体高さ方向で,表面部の相対含水率が不規 則に分布しているが,これは,貫通ひび割れと は別に微細なひび割れが,解析上に発生したた めである。

3.4 ひび割れ間の物質移動の影響

図-11 から図-13 にひび割れ間の水分伝導 率 Der が 0cm²/day, すなわち, ひび割れからの 水分移動が起こらないと仮定した場合の結果を 示す。

図から,ひび割れ間の水分移動を考慮した場 合の方が,貫通ひび割れの発生が早くなってい

(MPa

図-13 相対含水率分布と変形図

ることがわかる。これは,貫通ひび割れ発生前 に,微細ひび割れが形成されるが,ひび割れ間 での水分移動を考慮すると,局所的に拡散が進 行しやすくなり,収縮ひずみの進行が早くなる ためである。

図-13 に示す相対含水率分布は,水分移動 がある場合とない場合で大きな違いが見られる。 水分移動がある場合は,貫通ひび割れの周辺か ら特によく相対含水が低下し,また,全体的に も相対含水率が低下している。一方,水分移動 がない場合はひび割れた周辺からの含水率低下 は見られない。

4. まとめ

本研究では、構造解析手法としての RBSM と物質移動解析を統合した解析手法を開発し、 水分拡散問題を解析例として取り上げ、解析手 法の妥当性ならびに適用性の検討を行なった。 得られた知見を以下にまとめる。

(1) 一次元のトラスを組み合わせたトラスモデ ルにより,ひび割れを考慮した物質移動解析手 法を開発し,非常に簡単な考え方で物質移動問 題を取り扱うことが出来た。

(2)離散化解析手法である RBSM と、物質移動 を直接考慮できるトラスモデルの両者の利点を 組み合わせることによって、新たなひび割れ進 展解析手法の開発を行なった。

(3)水分拡散問題を対象とした,解析手法の適 用の例を示した。その結果,本解析で実際の力 学的な挙動を再現するとともに,離散ひび割れ モデルに比べ,非常に簡単に現実的なひび割れ 進展と,ひび割れの影響評価の検討が可能とな ることを示した。

参考文献

- 済藤成彦ほか:剛体-バネモデルを用いた 軸方向圧縮力を受ける RC 梁のせん断破壊 挙動の数値解析,コンクリート工学論文集, 第12巻第二号,pp.71-81,2001年5月
- Kouhei, N. et al: Numerical simulation of F racture Process of Concrete Model By Rigid Body Spring Method, JCI, Vol.24, No.2, p p163-168, 2002
- 3)秋田宏ほか:モルタルの乾燥・吸湿・給水 過程における水分移動,土木学会論文集,第 420号/V-13,pp.61-69,1990年8月
- 4) 古島正博ほか:高性能 AE 減水剤を用いた 早強セメントコンクリートの収縮ひびわれ 抵抗性能,コンクリート工学年次論文報告 集, Vol.15, No.1, pp.429-434, 1993