論文 超高強度 RPC 部材の復元力特性に関する実験的研究

石岡 拓^{*1}·竹中 啓之^{*1}·和泉信之^{*2}·千葉 脩^{*3}

要旨:Fc200N/mm² 級の鋼繊維混入反応性粉体コンクリート(RPC)を使用した架構の力学 的性状を把握する目的で,柱,梁および1層1スパン骨組試験体の静的載荷実験を行った。そ の結果,RPC 部材は靱性に優れていること,RPC 材料の応力-歪関係を用いて曲げ耐力の評価 が可能であること,および既往の RC 造に適用される復元力特性モデルが RPC 部材にも適用 可能であることが判明した。骨組実験からは大変形に至るまで損傷の少ない構造であること が判明した。

キーワード: 超高強度 RPC, 鋼繊維補強, 復元力特性, 耐震性能

1. はじめに

著者らは、鉄筋コンクリート造(RC造)建物 の地震時の損傷制御を目的として、制振デバイ スを組み込んだ損傷制御型 RPC(Reactive Powder Concrete および Composite,反応性粉体コンクリ ート)造骨組に関する研究を行ってきた。¹⁾本 報は RPC 架構の力学的性状を把握する目的で行 った柱梁部材および1層1スパンの骨組試験体 の静的載荷実験結果を基に,RPC 部材および RPC 骨組の復元力特性について検討したもので ある。本研究で用いる RPC は、セメント、珪石 質微粉末等の反応性粉体、細骨材および鋼繊維 を使用した複合材料である。

2. 試験体

試験体の一覧を表-1に試験体形状を図-1に 示す。試験体は,縮尺約 1/3 の模型試験体であり, 梁試験体1体,柱試験体3体および1層1スパ ン骨組1体である。

梁, 柱主筋および梁のあばら筋には高強度鉄 筋 USD685 を用い, 柱の帯筋には異形 PC 鋼棒 SBPD1275/1420 を用いた。梁は引張鉄筋比が 2.71%と高配筋である。柱部材は C02 を基準に軸 力と主筋量を変化させた。せん断スパン比は梁 が 4.0,柱が約 1.5 である。梁と柱はプレキャスト 部材を想定して, 両端部にシアキーを有する打 継を設けた。骨組試験体は階高が 1m,スパンが

<u>₹</u> *162/4	## (++	断面	主筋		せん断補強筋			あったい
訊駅1 种	하꼬	(mm)		Pg (%)		Pw (%)	m/ Gru	和力比
R01	· · · · · · · · · · · · · · · · · · ·	200 ×	4+2-D16	2 71	4-φ6@40	1.41	4	0
	*	220	(USD685)	2.71	(USD685)	1.41		0
C01	<u>+</u> +	250 ×	16-D16	5.09	4-U6.4@35	1 47	15	0
001	11	250	(USD685)	5.09	(SPBD1275/1420)	1.7/	1.5	0
002	柱	250 ×	16-D16	5.09	4-U6.4@35	1.47	1.5	-0.3
002		250	(<u>USD685)</u>		(SPBD1275/1420)			
002	++	250 ×	8-D16	2.55	3-U6.4@30	1 20	15	-0.3
003	11	250	(USD685)	2.35	(SPBD1275/1420)	1.29	1.5	-0.5
F01	柱	250 ×	20-D16	6.37	4-U6.4@35	1.47	1.56	0
		250	(USD685)	0.37	(SPBD1275/1420)			
	梁	200 ×	4+2-D16	2.71	4-φ6@40	1.41	4	0
		220	<u>(USD685)</u>		(USD685)			

表-1 試験体諸元

*1 戸田建設(株)技術研究所

工修 (正会員)

*2 戸田建設(株)構造設計部グループ長 工博 (正会員)

*3 戸田建設(株)技術研究所所長 工修 (正会員)

表-2 RPC の調合 (kg/m³)

水*1	RPCプレミックス	鋼繊維 <i>ϕ</i> 0.2×15mm (2vol.%) ^{*2}				
180	2254	157				
*1:高性能減水材を含む: *2:体積パーセント						

维兹		ヤング係数 降け		伏応力	最大応力		
或人们		$(\times 10^{5} \text{N/mm}^{2})$	(N/mm ²)		(N/mm^2)		
D16 (USD685	i)	1.909	750		959		
U6.4(SPBD12 /1421)	275	1.959	1369		1403		
ϕ 6 (USD685	i)	1.91	742		933		
		宝 紀岡 杜		口旋改度			
RPC		百小秋 阿小(土	l	江阳归夏及			
		$(\times 10^{3} \text{N/mm}^{2})$			(N/mm²)		
B01, F01	0.533			225			
C01		0.555		235			
CO2, O3		0.531		215			

表一3 材料試験結果

2m である。

本試験体に用いた RPC 材の諸元を表-2 に示 す。試験体は RPC 打設後に蒸気養生を行う。蒸 気養生は毎時 15℃ずつ 90℃に達した時点でその 温度を 48 時間保持し,その後約 24 時間の自然 降温を行う。

材料試験結果を表-3に示す。

3. 加力方法

梁,柱の実験では,試験体の端部を固定し, 柱頭に取り付けた L型加力梁を用いて試験体中 央部が反曲点となるように正負交番繰り返し加 力を行う。一方,骨組の実験では,柱上部のピ

図-3 加力スケジュール

ン支承に取り付けた加力梁によって正負交番繰 り返し加力を行う(図-2)。加力は変形角(R)制 御とし,図-3に示す加力スケジュールに従う。

4. 実験経過

各試験体の荷重-変形角関係を図-4に示し,

破壊状況の例として,図-5に柱試験体C01,C02, C03の最終破壊状況図を示す。

4.1 梁試験体 B01

梁変形角 Rb=1/800rad. で曲げひび割れが, 1/50rad.でせん断ひび割れが発生した。1/100rad.

250 200 B01 150 100 50 Q(kN) 0 -50 o曲げひび割れ -100 △せん断ひび割れ -150 口主筋降伏 -200 0 最大耐力 -250 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 Rb(rad.) 1500 C02 1000 500 Q(kN) 0 0曲げひび割れ -500 △せん断ひび割れ 口主筋降伏 -1000 ○最大耐力 -1500 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 Rc(rad.) 図-4

が生じた。1/100rad.で曲げひび割れ、せん断ひび 割れが発生した。1/50rad.で主筋が圧縮降伏し, 1/25rad.で柱正面中央のひび割れが垂直につなが り,実験終了時(Rc=1/20rad.)には大きく拡幅した。 また柱隅部の圧壊も顕著であった。

から 1/50rad.で主筋が降伏し, 1/33rad.で梁端部に 圧縮破壊が生じた。実験終了時(Rb=1/20rad.)の最 大残留ひび割れ幅は 0.15mm 程度で, 顕著なひび 割れやかぶりコンクリートの剥離は見られなか った。

4.2 柱試験体 CO1, CO2, CO3

C01 では柱変形角 Rc=1/800rad. で曲げひび割れ, 1/150rad.でせん断ひび割れが発生した。1/100rad. から 1/50rad.で主筋が引張降伏し, 1/50rad.で柱端 部に圧縮破壊が生じた。実験終了時(Rc=1/20rad.) の最大残留ひび割れ幅は0.04mm 程度で、顕著な ひび割れや、かぶりコンクリートの剥離は見ら れなかった。

C02 では柱変形角 1/50rad.で柱端部に圧縮破壊

C03 では柱変形角 1/150rad.で曲げひび割れと柱 端部に圧縮破壊が生じた。1/100rad.でせん断ひび 割れが発生した。1/50rad.で主筋が圧縮降伏し, 1/33rad.で C02 と同様に柱正面中央のひび割れが 垂直につながり,実験終了時(Rc=1/20rad.)には大 きく拡幅した。柱正面中央のひび割れ以外の曲 げ, せん断ひび割れの最大残留ひび割れ幅は 0.04mm 程度であった。

4.3 骨組試験体 F01

水平変形角 Rf=1/800rad.で柱梁接合面に目開 きが見られ、1/400rad.で梁に、1/150rad.で柱に、 それぞれ,曲げひび割れが発生した。1/100rad. で,梁の曲げひび割れ幅が最大 0.06mm 程度,ま た, 柱梁接合面の目開き量は最大 0.35mm 程度で あった。1/100rad.除荷後の残留変形は、梁、柱の ひび割れ面とともに柱梁接合面にもほとんど見 られなかった。1/100rad.から 1/75rad.の変形時に 梁にせん断ひび割れが発生し、梁主筋が降伏し た。1/25rad.まで梁端の圧縮破壊や、かぶりの剥 落は見られなかった。最大残留ひび割れ幅は梁 の曲げひび割れで 0.15mm 程度, 柱梁接合面の残 留目開き幅は 2.5mm 程度であり、骨組の変形に おいて柱梁接合面の目開き量が支配的であった。 最終破壊状況図を図ー6に、骨組の荷重-変形 角関係を図-7に示す。骨組は、梁曲げ降伏型架 構の挙動を示し、1/25rad.まで耐力が上昇し、顕 著なひび割れや、かぶりコンクリートの剥離は 見られず、安定した復元力特性を示した。

5. 実験結果の検討

5.1 梁, 柱試験体の諸強度

梁,柱試験体の諸強度に関する実験値と計算 値の比較を表-4に示す。両端部の打継面では早 期に曲げひび割れが発生しており,ここでの曲げ ひび割れは打継面以外で発生したものである。 曲げひび割れ強度は軸力比が0であるB01,C01 で比較的良い対応を示すが,軸力比が-0.3である C02,C03では実験値が計算値に比べて大きかっ た。主筋の降伏強度は実験値と計算値が良く一 致した。圧壊強度についてはB01,C01で比較的 良い対応を示すが,C02,C03では実験値が計算 値に比べて小さかった。最大耐力については実 験値と計算値が良く一致した。

5.2 主筋量の影響

主筋量を変化させた CO2 と CO3 について荷重

-変形関係の包絡線の比較を図-8に示す。主筋 量が 5.09%の C02 は 2.55%の C03 に比べて最大 耐力が約 20%大きかった。せん断補強筋量の少 ない C03 は最大耐力を示した 1/50rad.以降に耐力 が低下したが, C02 は 1/25rad.まで耐力を保持し た。

図-7 荷重-変形角関係(F01)

表--4 実験値と計算値の比較

		B01	C01	C02	C03	
曲げひび割れ強度 Mic(kN・m)		18	33	416	338	
		(28)	(44)	(210)	(202)	
	圧縮	-	-	424	387	
主筋降伏強度		•	-	(445)	(379)	
My(kN•m)	引張	-146	207	-	-	
		(120)	(188)	(481)	(409)	
圧壊強度		174	254	337	338	
Mcc(kN • m)	(158)	(262)	(484)	(410)	
最大耐力		176	274	528	434	
Mu(kN•m)		(181)	(297)	(519)	(433)	
()内は計算値						
M c=(0.56 $\sqrt{c} \sigma_{B}Z_{e}$ +ND/6)						
My,Mcc,Mu: 断面分割法による						
(RPCの応力-歪関係は文献2)を参考にした)						

6. 解析モデルの検討

6.1 解析モデル

骨組の解析モデルは**図-9**に示すように,加力 装置全体をモデル化した。柱と梁を曲げせん断 棒とし接合部パネルなどのその他の部材を剛体 とした。

6.2 復元力特性の設定

解析で用いる初期剛性は弾性式である(1)式を 用いた。本試験体の部材端部にはプレキャスト 部材を想定した打継面があるため、載荷初期か ら端部の目開きが発生した。そこで、曲げひび割 れ耐力は RPC の引張強度を0として算定した。

$$K = \left(\frac{h^3}{12EI} + \frac{\kappa h}{GA}\right)^{-1} \tag{1}$$

降伏時剛性低下率は高強度材料を用いた短柱 を対象とした松崎らの修正式(2)を用いた。降伏 耐力は表-4 に示した断面分割法による引張主 筋降伏強度を用いた。降伏点以後の勾配は 0.001K とした。

$$_{c}\alpha_{y} = (-0.0836 + 0.159 a/D + 1.97\eta)(d/D)^{2}$$
 (2)

履歴特性には武田モデルを用いた。除荷剛性低 下パラメータッは、実験値と柱梁部材の解析結 果から算出した等価粘性減衰定数の比較により 決定する。図-10 に示すように、軸力比=0 の B01, C01 では γ =0.4 を用いた場合、部材角 0.01rad.までは解析値が実験値を下回るが、部材 角 0.02rad.では概ね良い対応を示している。一方、 軸力比=0.3 である C02, C03 は γ =0.4 を用いた 場合、部材角 0.01 以降で解析値が実験値を大き く上回る。これは高軸力下で、RPC や高強度鉄 筋などの高強度材料を用いた場合には、初期剛 性、降伏点剛性が大きく、除荷後の残留変形は 小さく(除荷剛性が小さく)なるためで、本実 験では γ =0.8 で実験値との対応が良くなった。

6.3梁,柱の部材解析

断面性状は同一で軸力比の異なる C01, C02 の材端曲げモーメント-部材角関係を図-11 に 示す。C01 のように多段配筋である曲げ柱は引 張降伏以降にも耐力が上昇したため、大変形にお

図-11 材端曲げモーメント-部材角関係

いて解析値が実験値を大きく下回った。C02 は 主筋の引張降伏以前に圧縮降伏および圧壊が発 生したために降伏点近傍で実験値と計算値が異 なった。降伏以降の除荷剛性および履歴性状に ついては実験値と解析値が概ね一致した。B01 はC01,C03 はC02 と同様であった。

6.4 骨組の解析

B01, C01 の部材解析で用いた復元力特性を用いて, 骨組試験体 F01 を対象に解析を行った。 層せん断カー層間変形角関係を図-12 に示す。

骨組試験体 F01 は梁の曲げ降伏によりメカニ ズムを形成し,柱および柱梁接合部の損傷は僅か であったことが解析上も確認できた。F01 の履歴 性状は B01 とほぼ同じであり,1/50rad.以降の大 変形において解析値が実験値を大きく下回った。

7. 結論

RPC を用いた柱梁部材と骨組の実験および解 析を行い以下の結果を得た。

1) RPC 部材は 1/20rad.の大変形に至るまで耐力低下の少ない紡錘形の履歴性状を示した。

2)本実験の範囲内では RPC 部材の復元力特性の モデル化には既往の RC 部材のモデル化の適応 が可能であることが判明した。

3)RPC 骨組は大変形に至るまで損傷の少ない性状を示した

【謝辞】太平洋セメント株式会社中央研究所の

皆様のご協力に感謝の意を表します。

参考文献

1)竹中啓之他:制振デバイス付き超高強度 RC 造 骨組の耐震性能に関する研究, コンクリート工 学年次論文報告集, Vol.26, No.2, pp.1111-1116, 2004

2)北風野歩他: 超々高強度コンクリートを用いた 柱の圧縮特性に関する実験的研究, コンクリー ト工学年次論文報告集, Vol.25, No.2, pp.847-852, 2003

3)奥田将人他:超高強度コンクリートを用いた RC 柱部材の構造性能に関する実験的研究(その 2構造性能評価),日本建築学会学術講演梗概集, C-2 分冊, pp467-468, 2004