論文 中央構面に連層耐震壁を有する6層RC造試験体のエネルギー性状と エネルギー釣合に基づく最大応答変形予測

卯野 恵美*1·向井 智久*2·斉藤 大樹*3·野村 設郎*4

要旨:中央構面に連層耐震壁を有する6層RC試験体に対して仮動的実験を行った結果を 基に,基礎の固定条件の違いによる各試験体の応答変形及びエネルギー性状の比較,検討 を行った。また一方で,本試験体に対してエネルギー入力速度概念を用いたエネルギー釣 合に基づく最大応答変形予測手法を適用し,実験値に基づく精度検証を行った結果,本試 験体の最大応答変形が概ね安全側に評価でき,妥当な精度を有していることを確認した。 キーワード:連層耐震壁,基礎固定条件,変形分離,エネルギー釣合,最大応答変形予測

1. はじめに

筆者らは、これまでに中央構面に連層耐震壁 を有する6層立体RC建物に対して仮動的実験を 行い、基礎の回転を許容した基礎回転モデル(以 下、基礎回転)と基礎を固定した基礎固定モデ ル(以下、基礎固定)における復元力特性や損傷 過程などの実験結果を示した¹⁰。本論では、試 験体の変形を最大4成分に分離して変形性状の 考察を行い、その後エネルギー応答性状につい て検討する。また、本試験体に対して繰り返し を考慮したエネルギー釣合に基づく最大応答変 形予測手法を適用し、手法の妥当性を検証する。

2. 実験概要

試験体形状及び加力装置を図-1に示す。試 験体は 6層1×2スパンで,中央に連層耐震壁を 有している。なお試験体の縮尺は 1/3 である。 また,両固定条件の実験は同一試験体で行い, 単点加力より得られた固有周期は,基礎回転: 0.157sec,基礎固定:0.269sec となった。加力 装置の都合上,無限均等スパンと仮定した支配 面積に対して梁の長期設計を行い,梁ヒンジ機 構を確保できる柱として柱の設計を行ってい

る。また,文献2)で指摘されている直交梁及び スラブ効果を考慮し,逆三角形の外力分布を想 定した場合の試験体の保有水平耐力は基礎回転 :415kN(C_B=0.74),基礎固定:739kN(C_B=1.32)と なった。仮動的実験に先立って実施した予備加 力実験の結果,各階剛性が非常に高く(約 1,470kN/mm),アクチュエータを目標変位に到 達させることが困難であった。その為,試験体 の自由度を2自由度に縮約し,4階とR階の2 カ所で加力することとした。また,実験では試 験体の縮小率を考慮し入力加速度波形の時間軸 を $1/\sqrt{3}$ 倍し,**表**-1に示す地震動を実大相当 速度が小さいものから順に入力した。

*1	東京理科大学大学院生 理工学研究科建築学専攻		(正会員)
*2	独立行政法人建築研究所 構造グループ	博(工)	(正会員)
*3	独立行政法人建築研究所 国際地震工学センター	工博	(正会員)
*4	東京理科大学 理工学部建築学科 教授	工博	(正会員)

3. 試験体の変形性状

本章では試験体の変形成分の分離を行い,そ れらを基に地震時の変形性状を把握する。試験 体の水平変形は試験体外に設置した不動点から マグネスケールを用いて計測を行った。これに より得られた絶対変形(以下, δ A)は式(1)に 示すように,回転変形(以下, δ ro),曲げ変形 (以下, δ m), せん断変形(以下, δ sh),滑り 変形(以下, δ sh), 冷り

 $\delta_{\rm A} = \delta_{\rm ro} + \delta_{\rm m} + \delta_{\rm sh} + \delta_{\rm slip} \tag{1}$

以下に各成分の算出方法を示す。 δ ro は**図**-**2**(a)に示すように基礎部に設けた垂直変位計 から基礎浮き上がり回転角 θ roを算出し、各階 までの高さを乗じて値を算出した。また δ slip も同様に基礎部に設けた水平変位計から算出し た。 δ m は各階壁側柱に設けた変位形から各階 の曲げ回転角 θ m(**図**-**2**(b))を算出し、その階 までの回転角を足し合わせたものに階高を乗じ ることにより求めた。 δ sh に関しては、求めた δ m と δ ro の値に δ slip を足し合わせ、 δ A から 差し引いた値とした。

図-3には固定条件別に最上階変形の変形分 離を行い,包絡線として算出した結果を示す。 基礎回転時に着目すると,回転変形成分が卓越 しており,その割合は東北大(以下,TOH25) では最大で全体の約6割を占めていたが,JMA Kobe75(以下,KOBE75)では7割以上を占めて いる。また,JMA Kobe50(以下,KOBE50)開始 時以降,各変形の割合は一定であることが確認 できる。一方,基礎固定時に着目すると,基礎 回転時とは異なりδmが卓越していることが分 かる。しかし,Takatori(以下,FTAKA250)開 始以降でδshが卓越し始める。これは実験時に 確認された連層耐震壁一階部分が曲げ降伏後, せん断破壊した事との相関性を示している。

図-4には横軸に最上階変形を,縦軸に1階の層間変形に対する各変形成分割合を示す。基礎回転において正側でEl centro(以下, ELCE37) 以降,負側では KOBE50 以降に載荷方向とは 逆にせん断変形が見られている。この挙動は基

表一1 入力地震動

基	礎回転	基礎固定						
入力地震動	実大相当 速度[m/sec]	入力地震動	実大相当 速度[m/sec]					
東北大	0. 25	JMA Kobe50	0. 50					
El Centro	0. 37	JMA Kobe75	0. 75					
JMA Kobe50	0. 50	Takatori	2. 50					
JMA Kobe75	0. 75							

(a) 回転変形及び滑り変形 (b) 曲げ変形 図-2 変形成分の算出法

礎固定では見られないことから,基礎の固定条件の違いにより発生しているものと考えられ, このような連層耐震壁付きラーメン構造物の逆 せん断の現象は既往の研究 "においても見られ ており,詳細な検討を要するものと思われる。

4. 試験体のエネルギー応答性状

4.1 エネルギー吸収の分類

図-5に地動加速度と応答速度より算出した
 入力エネルギー,及び 1,2 層の各履歴吸収エ ネルギー及び 1,2 層粘性減衰吸収エネルギー の和を各地震動ごとに示す。ここで1層とは試 験体の1~3階,2層とは4~R階部分を指し, 例えば2層の層間変形とは、4階とR階の間の 変形である。また、粘性減衰吸収エネルギーは 入力エネルギーから履歴吸収エネルギーを差し 引いたものである。図-5から基礎回転,基礎 固定の両試験体において共通の地震動である KOBE50, KOBE75 双方とも同程度のエネルギ ーが入力されたことが確認できる。次に基礎回 転に着目すると、地震動が大きくなるに従って 履歴吸収エネルギーの吸収割合が減少してい る。一方、基礎固定においては地震動が大きく なるにつれて履歴吸収エネルギーの割合が大き くなっている。この結果から、基礎回転試験体 は基礎固定と比べて履歴エネルギー吸収性能の 小さい試験体であると考えられる。

4.2 エネルギー入力と最大応答変形

筆者らは既往の研究において、単位時間当た りのエネルギー入力が最大の際に最大応答変形 が発生するという特性に基づいてランダムな地 震応答を定変位振動に置き換え、等価な繰り返 し数を考慮したエネルギー釣合手法の提案を行 っている"。そこで、本試験体においても単位 時間当たり(本論では各層の正負最大応答変形 時の割線剛性から得た周期)のエネルギー入力 と最大応答変形との関係について検討する。図 -6に基礎回転時、固定時における最終地震動 である KOBE75, FTAKA250 について、エネル ギー入力と最上階変形の時刻歴を示す。図より, 基礎回転についてみると1秒付近で単位時間あ たりの入力エネルギーが最大となっているが, 最大応答変形は3秒付近で生じていることがわ かる。そこで、最大応答変形を迎えた際の単位

いる。そこで、最大応各変がを延えた時の単位 時間あたりの入力エネルギーについてみると最 大入力エネルギーと同程度のエネルギーが入力 されていることがわかる。これより単位時間あ たりの入力エネルギーと応答変形において相関

性を確認することができた。一方,基礎固定に ついてみるとエネルギー入力が最大の際に最大 応答変形が発生していることが確認できる。

4.3 ループ面積係数*を*

エネルギー釣合手法の精度向上のためには, 繰り返しによる履歴エネルギー吸収を正確に評 価する事は重要である。筆者らが提案している エネルギー釣合手法においては,ループ面積係 数 ξ によって繰り返しによるエネルギー吸収性 能を表現している。図-7に示すように,ξ は 式(2-1),式(2-2)で表される。

本節では、本試験体における § について検討 を行う。試験体の § を正確に算出する場合、例 えば正負交番繰返し載荷実験(繰り返し数は 2

回以上)を行い、各変形時における1サイクル 当たりのループ面積 Ei を求める必要がある。 しかし、本実験は地震動を入力しているため応 答変形はランダムな値である。そこで、図-8 に示すように各ループにおける最大変形点(A 点)から荷重 0 を向かえる点(B 点)を結んだ直 線を除荷時剛性 K'とし, K'より最大点指向を 仮定した菱形の面積を簡易に Ei として算出し た。なお、ξで表すループ面積は2サイクル目 以降であるため, A 点が経験している最大点で ない場合のみ K'を求めた。図-9に横軸塑性 率,縦軸 K'を示す。図より,塑性率が増加す るに従い K'が低下していく傾向を示す基礎回 転時と比較し、基礎固定時の K'はどの塑性率 の範囲においてもほぼ一定の値を示す。これは, 両固定条件の実験を同一試験体で行っており, 基礎固定時には既にオープンフレーム構面の梁 が損傷しているためであると考えられる。この 結果より得られた K'を塑性率の近似曲線化し、 K'より計算したξ,及び武田モデルを仮定した 際の ξ を 図-10 に示す。なお、基礎固定におい ては塑性後の採用点が1点のみであったため図 中に示すことが出来なかった。一方基礎回転に おいては、図-9より塑性率が1以上の範囲で ばらつきが少ないため, 塑性率2以上の範囲で も適用可能であると判断した。図より、基礎回 転時におけるとは塑性率の小さい範囲では小さ な値であるが、塑性率の増加と共にその値は大 きくなる。また武田モデルのξの計算結果は, 塑性率の大きな範囲では基礎回転時と比較的近 い値を示すことが確認できる。本実験では基礎 固定について検討できなかったが、基礎固定条 件の違いによるとの値の違いについて今後検討 の必要があると考えられる。

5. エネルギー入力速度概念に基づいた最大変 形量予測

筆者らがこれまで提案してきた文献 4)等に 示した手法は,解析モデルを用いたものであり, 多層建物である試験体を対象に検討は行ってい

ない。そこで本章では,仮動的実験における総 入力エネルギー量 ED,等価な繰り返し数 ND を用いて最大応答変形を予測し,実験値との比 較を行うことによって本手法の妥当性について 検証する。

5.1 エネルギー吸収のモデル化と変形推定式

1 質点 RC 構造物において最大応答平均変形 δD(正負最大応答変形の平均値)を定変位振幅 としてランダムな地震応答を定常応答に置き換 えることが出来ると仮定⁴すると,式(3)のよ うに ND を表すことが出来る。

$$ND = ED/\Delta E_{max}$$
(3)

ただし、ΔEmax:単位時間あたりのエネルギー 入力の最大値

次にエネルギー吸収のモデル化を示し、応答 変形推定式を導く。まず、建物が弾塑性範囲に ある場合について考える。図-11に示すように RC 造建物のエネルギー吸収量 ES を弾性歪み エネルギー Ey と 1 サイクル目の塑性歪みエネ ルギー Eds, 2 サイクル目以降の累積歪みエネ ルギー Ec, 粘性減衰吸収エネルギー Eh の 4 種 類に分類し式(4)によってモデル化を行う。な お、Eh は初期剛性比例型の式となっている。

$$\begin{split} ES &= E_{y} + E_{ds} + E_{c} + E_{h} \\ E_{y} &= 0.5 \{ \delta_{c} Q_{c} + (\delta_{y} - \delta_{c}) (Q_{y} + Q_{c}) \} \\ E_{ds} &= 2Q_{y} (\delta_{D} - \delta_{y}) \\ E_{c} &= 4Q_{y} \xi (ND - 1) (\delta_{D} - \delta_{y}) \\ E_{h} &= 2\pi h (\omega_{e} / \omega_{0}) Q_{0D} \delta_{D}^{2} ND \\ \hbar &\subset U, \ Q_{c} : UU \\ \delta_{c} : UU \\$$

円振動数, ω_0 :初期固有円振動数, QoD = Ko× δ_D (Ko:初期剛性)

式(4)で表されるエネルギー吸収量 ES と入 カエネルギー量 ED が等しいと仮定し、 δ D に ついて解くと、式(5)が得られる。

$$\delta_{D} = \frac{ED \cdot K_{ey} - \{0.5(\beta - \alpha\beta - 3) - 4\xi(ND - 1)\}Q_{y}^{2}}{2Q_{y}[\{1 + 2\xi(ND - 1)\}Q_{y} + \pi h\gamma ND \cdot Q_{0D}]} (5)$$

$$\tau_{z} \tau_{z} t_{z} \downarrow, \quad \alpha = K_{ey} / K_{0}, \beta = Q_{c} / Q_{y}, \gamma = \omega_{e} / \omega_{0}$$

続いて,建物の応答変形が降伏変形以下,か つひび割れ時の変形量以上の場合について考え る。図-12(a)に示す用に,エネルギー吸収を 分類し,ESは式(6)で表す。

$$ES = E_y + E_c + E_h$$

$$E_y = 0.5 \{\delta_c Q_c + (\delta_D - \delta_c)(Q_D + Q_c)\}$$

$$E_c = 4Q_D \xi_c (ND - 1)(\delta_D - \delta_c)$$
(6)

弾塑性範囲と同様に ED=ES として δ D について解くと、式(7)が得られる。

$$\delta_{D} = \frac{\{0.5 + 4\xi_{c}(ND - 1)\}\delta_{c} + ED/Q_{D}}{0.5 + 4\xi_{c}(ND - 1) + 2\pi h\gamma ND \cdot Q_{0D}/Q_{D} + 0.5Q_{c}/Q_{D}}$$
(7)
最後に応答変形がひび割れ時の変形量以下で

ある場合について考える。**図-12(b)**に示すようにエネルギー吸収を分類しESは式(8)で表す。

$$ES = E_y + E_h$$

$$E_y = 0.5\delta_D Q_D$$
(8)

同様に ED=ES としてδD について解くと, 式(9)が得られる。

$$\delta_{\rm D} = \sqrt{\frac{\rm ED}{\rm K_0(0.5 + 2\pi h\gamma \rm ND)}} \tag{9}$$

なお,式(5)及び式(7)については、 ξ及び ED, ND(弾性スペクトルを用いて算出する場合)が 塑性率の関数となっているため,仮定した応答 変形と変形推定式によって得られる応答変形が 等しくなるまで収束計算を行う必要がある。ま た,推定式の適用手順としては,弾塑性範囲に おける収束計算を行い,そこから算出された値 が降伏変形以下であれば,式(7)を用いてもう 一度収束計算を行う。更にその値がひび割れ変 形量以下である場合は,式(9)を用いて変形量 の推定を行う。

5.2 最大応答変形推定過程

本論では仮動的実験から算出された ED, ND を用いて, 5.1で述べた方法により応答変形推 定を行う。以下に具体的な最大応答変形推定過 程について述べる。

(1)多層建物である本試験体を1 質点系に縮約する。まず、実験から得られたベースシアQB-最上階変形δtop曲線から包絡線を作成し、文献5)に基づきトリリニア化を行う。また除荷時剛性を、4.3で示したように、δDの関数として算出する。

(2)(1)で得られたトリリニア骨格曲線から、
 降伏時剛性 Key,降伏時周期 Tey を算出し,式
 (10)により,等価質量 Me を算出する。また、
 ベースシア係数 CB にMeを乗じることで1 質点
 系の降伏耐力 Qy1を求め,骨格曲線を作成する。
 Me = Key · (Tey/2π)²

(3)4 階と R 階の 2 カ所で加力を行った 2 質

点データの実験結果から正負最大応答変形時の 割線剛性を用いて固有値解析を行い,等価周期 Teを算出する。

(4) 地動加速度及び,応答速度を用いて,試 験体の入力エネルギー ED を算出し,式(11)を 用いて 1 質点系の入力エネルギー ED1 に変換 する。また式(3)によって繰り返し回数 ND を 算出する。

$$ED_{1} = (M_{e} \cdot VE^{2})/2$$

$$VE = \sqrt{2ED/M_{all}}$$
(11)

ただし、VE:入力エネルギー速度換算値

Mall:試験体の全質量

(5) δ D を仮定し, 5.1で示した式(5), 式(7), 式(9)を用いて最大応答変形の推定を行う。

5.3 結果と考察

表-2は5.2より推定した正負最大塑性率の 平均値(以下,推定値)及び,実験で計測され た最上階における正負最大塑性率の平均値(以 下,実験値)を示したものである。ただし,基 礎回転における最終地震動であるKOBE75につ いては,前入力地震動である KOBE50が入力さ れた時点でトリリニア化における降伏点まで変 形が達していたため,骨格曲線がトリリニアか らバイリニアに近づいていると考えられるた め,式(4)におけるEyをバイリニアモデルとし 式(12)を用いて推定を行った。

$$\delta_{\rm D} = \frac{\rm ED \cdot K_{ey} - \{1.5 + 4\xi(\rm ND - 1)\}Q_y^2}{2\{1 + 2\xi(\rm ND - 1) + \pi h\gamma \rm ND\}Q_y^2} \cdot \delta_y$$
(12)

また,基礎固定については4.3でも述べたよう に塑性後の ξ について採用点が少なかったた め,武田モデルにおける ξ を使用した。表より 基礎回転,固定ともに弾性範囲において推定値 は実験値の 1.5 ~ 1.8 倍とやや過大評価するが, 塑性範囲では推定値は実験値の 1.1 ~ 1.3 倍と なり塑性範囲では比較的良い精度で推定できる と言える。また,本論では除荷時剛性を簡易に 設定したが,除荷時剛性を適切に決定し,履歴 エネルギー吸収を評価することで推定精度はさ らに向上すると考えられる。

6. まとめ

本論では、仮動的実験結果に基づき連層耐震壁

表-2 実験値と推定値の最大平均塑性率

基礎回転			基礎固定		
地震動	実験値	推定值	地震動	実験値	推定値
TOH25	0.08	0.14	FK0BE50	0.56	0.82
ELCE37	0.33	0.59	FKOBE75	0, 80	1.21
KOBE50	1.08	1.48	FTAKA250	2.04	2.59
KOBE75	1.73	2.02			

を有する立体 RC 造試験体の応答変形及びエネ ルギー吸収性状の検討を行った。また,試験体 に対してエネルギー釣合による最大応答変形予 測手法を適用し,その精度を確認した。

謝辞:中央構面に連層耐震壁を有する1×2スパン6層鉄筋コンクリート造試験体の仮動的実験は,文部科学省防災科学技術研究所の「大都市大震災軽減化特別プロジェクト」の一環で実施された。関係諸氏に感謝の意を示す。

参考文献

 1)岡野裕,勅使川原正臣,向井智久,楠浩一: 中央構面に連層耐力壁を有する1×2スパン
 RC構造物の仮動的実験による損傷過程,コンクリート工学年次論文集,Vol.26,No.2, pp.571-576,2004

2)上之薗隆志,芳村学,岡本伸,中田慎介:鉄
筋コンクリート造実大7層建物の仮動的実験日米共同研究 その 3-,日本建築学会構造系論
文集,第372号, pp.55-64, 1987.2

 3) 芳村学:鉄筋コンクリート造実大7層建物の 弾塑性解析と1質点による仮動的実験手法-日
 米共同研究その2-,日本建築学会構造系論文
 集,第377号,pp.64-76,1987.7

4) 向井智久, 衣笠秀行, 野村設郎:地震動を受ける RC 構造物の限界応答変形量を保証するに 必要な耐力算出法とその精度検証, 日本建築学 会構造系論文集, 第532号, pp.137-143, 2000.6 5) 織裳慎一郎, 向井智久, 衣笠秀行, 野村設郎 : RC 造ピロティ建物の 1 質点化に関する研 究, 日本建築学会関東支部研究報告集, pp.225-228, 2001