論文 台風 14 号による風車基礎定着部の破壊挙動に関する検討

松尾 豊史*1·金津 努*1·高原 景滋*2·銘苅 壮宏*2

要旨:2003年9月11日に宮古島を直撃した台風14号において,基礎定着部の破壊により風 車が倒壊するという被害が生じた。このため,基礎定着部の破壊メカニズムを解明するため に,現地の倒壊状況を調査するとともに,基礎部材の材料試験および基礎定着部を詳細にモ デル化した三次元非線形有限要素解析を実施した。この結果,基礎定着部はコーン状の破壊 により終局状態に達することが判明し,現地の破壊状況と概ね一致した。 キーワード:風車,基礎,定着,材料強度,有限要素解析,被害調査

1. はじめに

過去30年間で最大級の台風14号(日最大瞬間 風速74.1m/s)は平成15年9月11日に宮古島を 直撃し,公共建築物を始めとして,電力設備に も大きな被害をもたらした。その際,沖縄電力 (株)の風力発電実証研究設備(図-1参照)につ いては,6基のうち3基が倒壊,2基がブレー ド破損,1基がナセルを損傷するという被害を 受けた。風車自体の倒壊に至った設備のうち, 2基はタワーの座屈,1基は基礎定着部の破壊 によるものであった。

本論文では,これらの被害のうち,倒壊に至 った七又風力1号機の基礎定着部の破壊メカニ ズムを現地調査,材料試験,構造解析などによ って明らかにし,設計との対応について考察を 加えた。

2. 現地調査結果

基礎破壊風車の現地調査を行った結果から, 風車基礎部の特徴的な破壊状況を**写真-1**にま とめた。

2.1 基礎定着部の概略

基礎は逆T字基礎となっており,基礎上部は 直径4m・高さ1.8mの円柱型となっている。基 礎定着部は,長さ115cm・直径36mmのアンカ ーボルト88本で締結されたアンカーリングが 埋め込まれている(図-2参照)。

2.2 アンカーボルト界面

写真-1(a)から,アンカーボルトの界面にお いて,コンクリートが破壊していることが確認 できた。ただし,アンカー部の引張側(写真上部) においては,アンカーボルト界面での破壊が明 瞭なのに対して,アンカー部の圧縮側(写真下

*2 (株)沖縄電力 研究開発部 (非会員)

部)では、コンクリート片が付着しているため、 全周にわたった界面破壊は認められない。アン カー部の底面は、凹状の破壊形状を示している (**写真-1**(b)参照)。

2.3 コーン状破壊

2.4 割裂ひび割れ

写真-1(c)から、コンクリートがブロック状 に鉄筋に沿って破壊しており、アンカー部がコ ーン状破壊をしたものと推定できる。倒壊後の 状態のみで判断することは難しいが、倒壊時に には曲げモーメントとせん断力が同時に加わっ ているため、基礎破壊の過程では、アンカーリ ング部において局所的な支圧破壊を伴っていた 可能性が強い。 **写真-1(d)**より,基礎の上部に割裂ひび割れ が入っていることが観察できた。なお、横方向 フープ筋も破断している箇所を確認しており, 過大な膨張圧が作用していたと考えられる。

割裂ひび割れがどの時点で発生したかの判断 は難しい。ただし、コーン状破壊後に割裂ひび 割れが入るとは考えにくいことから、割裂ひび 割れがコーン状破壊前に進行していたと推測さ れる。

2.5 縦方向主筋の変形と破断

タワー北側の縦方向主筋は, コーン状破壊し た時にコンクリートブロックによって, 屈折し ており, 中には, 破断しているものも観察でき た(**写真-1**(c), (d)参照)。

(a)風車倒壞(側面)

(b)風車倒壊(底面)

(c)コーン状破壊

(d)割裂ひび割れ

写真-1 風車基礎部の破壊状況

3. 基礎部材の強度試験

3.1 概要

破壊した基礎から、コンクリートと鉄筋を採取 して、材料試験を行い、風車基礎部の材料強度を 求め、材料強度の設計値と実強度との関係などを 確認した。

3.2 試験結果とその評価

(1) コンクリート

試験片の数は,通常ばらつきの影響を考慮し て,3個の平均として示される。今回は実際の 基礎コンクリートからのコア抜き試験片である ので,4個の平均とした。表-1(a)に基礎部の コンクリートの圧縮試験結果と割裂試験結果の 一覧を示す。

コンクリート圧縮強度は,基礎上部で 35.6MPa,フーチング部で39.5MPa となってお り,設計基準強度の24MPa以上であるため,設 計どおりの材料が使われていたと判断される。

(2) 鉄筋

試験片の数は, コンクリートと同様に, 4本 とした。**表-1**(b)に主筋とフープ筋の引張試験 結果の一覧を示す。

鉄筋の降伏強度は, 主筋が 369.8MPa, フープ 筋が 344.8MPa であり, 引張強度に関しては, 主筋が 554.6MPa, フープ筋が 532.7MPa であっ た。いずれの鉄筋も SD295 の規格を満足する鉄 筋であり, 設計通りであると判断される。

$(a) = (f_{ck} = 2 + 1)(1 a)$			
	圧縮強度	ヤング係数	割裂引張
種別	(MPa)	(GPa)	強度(MPa)
基礎上部	35.6	28.6	3.60
フーチング部	39.5	29.3	4.35
(b) 鉄筋(SD295)			
	降伏強度	引張強度	ヤング係数
種別	(MPa)	(MPa)	(GPa)
主筋	369.8	554.6	189
フーフ。筋	344.8	532.7	187

表-1 材料試験結果

4. 風車基礎定着部の有限要素解析

- 4.1 解析概要
 - (1) 解析対象

本解析の対象は七又風力1号機の基礎定着部 である。タワー部の全高は42m,基礎は逆T字 基礎となっており,基礎定着部はアンカーボル トで締結されたアンカーリングにより定着され ている。なお,地盤の影響は少ないと判断して, モデル化を省略した。

(2) 解析手法

コンクリートおよび鉄筋については、材料の 非線形特性を考慮した解析手法を用いた。解析 コードには、RC構造物の三次元非線形有限要 素解析システム Total-RC¹⁾を用いた。

(3) 解析モデル

解析要素分割図を図-3に示す。本解析では, タワーおよび基礎部の各構成要素ごとに,詳細 にモデル化した。

なお,解析モデルでは,アンカーボルトを梁 要素でモデル化しているため,アンカーボルト に被せられたビニールホースの断面積を考慮し て,アンカーリングの面積を5%低減した。

(4) 解析条件

a) 入力物性

コンクリートや鉄筋などの解析用入力物性は、
表-1の材料試験結果およびコンクリート標準
示方書²⁾に基づいて設定した。

b) 境界条件

解析では、対称条件を考慮して、解析対象の 1/2のみをモデル化した。1/2対称断面について は断面方向に垂直方向の変位のみ拘束し、フー チング底部については全方向の変位を拘束した。 c)荷重条件

ナセルならびに,ブレード部,タワー部の総 自重(650kN)を鉛直方向に載荷した後,タワー頂 部に集中荷重として水平方向に強制変位を与え た。

なお,工事施工管理記録によれば,アンカー ボルトは,2.12kN・mのトルクで締め付けられて いたことが明らかになったため,締め付け力に ついても初期荷重として考慮した³⁾。

4.2 解析結果

図-4はタワー頂部の変位とタワー基部のモ ーメントの関係を示したものである。この図に は、解析結果の応力状態から判断した特徴的な 現象が生じた a ~ f の各段階を示している。ま た、図-5には、モーメント a ~ f 時に対応し た基礎上部(図-3(c)参照)の最大せん断ひず みコンター図を示した。なお、ひび割れ図、主 応力図、変形図などを別途出力して、解析結果 の考察に用いたが、紙面の都合上割愛した。

(1) モーメントa : 5046(kN·m)

引張側のアンカーリングの側方方向にひび割 れが生じた(図-5(a)参照)。

(2) モーメントb: 10005(kN·m)

引張側のアンカーリング側方のひび割れが進行し, 圧縮側のアンカーボルト上部の圧縮応力度も大きくなり, 局所的にひび割れが発生した(図-5(b)参照)。

(3) モーメントc : 14655(kN·m)

引張側アンカーリングでは,外側・内側で水

平方向にひび割れが進行した。また,引張側の アンカーボルト沿いにもひび割れが発生して, 基礎上面でも割裂ひび割れが発生した(図-5 (c)参照)。

(4) モーメントd: 19470(kN·m)

引張側のアンカーボルト沿い,およびアンカ ーリングの内側方向のひび割れが大きく進行し た。また,圧縮側のタワー底部下の基礎上面に 局所的に圧縮破壊が生じた(図-5(d)参照)。

モーメントdの段階で,引張側のアンカーボ ルト沿いにひび割れが進行する状況は,実現象 に近いと考えられる。また,アンカーリングの 内側方向にひび割れが進行することも,実現象 で風車底面が凹状の破壊面となっていることに 比較的近い。

(5) モーメントe: 21830(kN·m)

圧縮側のタワー底部下の基礎上面全体に圧縮 破壊が進行し、引張側の基礎上面では割裂ひび 割れが大きく進行した.引張側アンカーリング からのひび割れは、外側・内側方向に大きく進 行した(図-5(e)参照)。

図-3 解析要素分割図

(6) モーメント f : 23868(kN·m)

モーメントe~fの間で,縦主筋2本が降伏 し,直後に引張側のフープ筋も降伏した。この 時,アンカーボルトに発生した最大引張応力は 降伏強度の約83%であった。その後,コンクリ ートのコーン状破壊に進展すると考えられる斜 め方向ひび割れが進展し,ひずみが大きくなっ ている。また,最大耐力時には,圧縮側タワー 底部下では圧縮応力が低下し,引張側アンカー ボルト周辺で全体的にひずみが大きくなってい る(図-5(f)参照)。

この後に,コーン状破壊が進展し,最終的に, 引張側の基礎部がアンカーボルト界面に沿って 抜け出して,終局状態に達したと考えられる。

以上より,本解析により,概ね基礎定着部の 破壊のメカニズムを再現できたと判断できる。

4.3 考察

アンカーのコーン状破壊の耐力評価式⁴⁾は概 ね有効投影面積およびコンクリートの圧縮強度 の 1/2 乗に比例して増大するため,基礎部にお ける定着力の増加には埋込長を深くすることお よび,有効投影面積内に鉄筋を配置すること⁵⁾ 等が有効であると考えられる。また, 脆性的な 破壊を防止するためには, アンカーボルトの降 伏で定着力が決まる方が望ましい⁴⁾。

5. 設計との対応

5.1 強度のばらつきの評価

今回の有限要素解析では、コンクリートと鉄 筋の材料特性は試験データの平均値を用いてい るので、解析結果も平均的な値と考えるのが妥 当である。設計強度との対応およびばらつきの 影響を考慮して、コンクリートおよび鉄筋に表 -1の設計強度を用いた解析を実施した。

有限要素解析の入力データとしてコンクリー トと鉄筋に設計強度を用いた場合は,耐力が約 15%低下した(図-4の設計強度を参照)。これは, 圧縮側タワー底部下の基礎上面での圧縮破壊す る変位が小さく,引張側基礎部の損傷領域も広 くなるためである。コンクリートと鉄筋の設計 強度を特性値と考えることにする。このことよ り,有限要素解析の入力データとしてコンクリ ートと鉄筋に設計強度を用いた解析は,概ね解 析結果のばらつきの下限と考えることができる。

5.2 設計荷重に関する考察

七又風力1号機の設計で考慮されたタワー基 礎部に作用する曲げモーメントは,8273kN・m (=843.6t・m)であった。一方,今回の解析結果の 下限値が20186kN・mであり,設計で想定された 風荷重に対して約2.4倍以上の風荷重が作用し たことになる。これは,設計時の荷重評価では, 風車の3本のブレードがすべてフェザリング (ブレードの向きを風の抵抗が最も小さくなる ように変更する制御)が有効に作用した場合で 荷重算定しているが,現地調査の結果では,2 本のブレードがフェザリングされていなかった 可能性がある⁶⁾。その結果,風荷重は設計荷重 よりも非常に大きくなったと推測される。

一方,設計で想定した土かぶりを含めた基礎 全体としての抵抗モーメントは 34661kN・m (=3535.4t・m)であったので,解析結果はこの値 よりは低い数値になっている。したがって,基 礎定着部が抜けなければ,基礎全体としては転 倒しなかったものと考えられる。

6. まとめ

本研究で得られた主な知見は、次のとおりで ある。

- (1) 倒壊した風車の基礎部を調査した結果,アン カーの部のコーン状破壊,割裂破壊,縦方向 主筋の変形と破断,アンカーボルト界面の破 壊などが観察された。
- 風車基礎部からコア抜きしたコンクリートおよび切り出した鉄筋試験片を用いて材料試験

を実施し,設計上の材料強度との整合性を確 認した。その結果,コンクリート,鉄筋とも に,所定の強度を有しており,設計通りの材 料が使われていたと判断できる。

- 3) 有限要素解析結果では、斜め方向のひび割れの進展が認められ、コーン状の破壊により終局に至っており、現地の破壊状況と概ね一致している。
- 4) 解析から求めた基礎の破壊曲げモーメントは、 設計で考慮された基礎部に作用する曲げモー メントよりも大きいが、設計で想定した土砂 も含めた基礎全体の抵抗曲げモーメントより は小さい結果となった。

なお,今後,建設時および非常時のコストや安 全性を考慮したタワー,定着,基礎を含む風車全 体の建設のための設計手法の構築が望まれる。

謝辞:

現地調査にあたっては、沖電設計(株)と沖縄 新エネ開発(株)の皆様には便宜を図って頂きま した。本解析を実施するにあたっては、 (株)TOTAL INFORMATION SERVICEの皆様に は、多大なるご協力を頂きました。また、本研 究のとりまとめにあたっては、電力中央研究 所・構造工学領域の皆様には貴重なご助言を頂 きました。ここに記して、謝意を示します。

参考文献

- 1) Total-RC 理論説明書(http://www.total-inf.co.jp/)
- 2) 土木学会: コンクリート標準示方書・構造性能 照査編[2002 年制定], 2002.3
- 3) 山本晃:ねじ締結の理論と計算,養賢堂, 1970.
- 4) 日本建築学会:各種合成構造設計指針・同解説,第 4編各種アンカーボルト設計指針・同解説,1984.
- 5) 日本電気協会・電気技術基準調査委員会:機器・ 配管系のアンカー部評価法,原子力発電所耐震 設計技術指針,JEAG4601-1991 追補版,1991.
- 沖縄電力株式会社:台風 14 号による風力発電設備の倒壊事故調査報告書,2004.