論文 鉄筋コンクリート壁の収縮ひび割れの幅と間隔

徐泰錫*1 中川隆夫*2 大野義照*3

要旨:既報において鉄筋コンクリート(RC)壁における乾燥収縮による収縮ひび割れ幅の付着 解析による算定法及び等価喪失長さを用いた略算法を提案している。これらの算定法は略算 法でも収束計算を行わなければならない煩雑さがあり、より簡単な算定法が求められる。本 報では付着解析によって鉄筋比、鉄筋径、コンクリート強度、壁長さ、拘束率、乾燥収縮量 及びクリープ係数のひび割れ幅などへの影響を調べ、簡単なひび割れ幅やひび割れ間隔の算 定式を提案した。

キーワード:付着解析、等価喪失長さ、略算法、ひび割れ幅、ひび割れ間隔

1. はじめに

前報 ¹⁾において,一軸拘束鉄筋コンクリート 試験体の長期の乾燥収縮ひび割れ幅が,付着解 析によってひび割れ発生後の鉄筋ひずみ分布を 捉えることによって算定できることを確かめた。ま た,各種要因を考慮した等価喪失長さ Lb を導き, ひび割れ幅の略算法を提案した²⁾。これらの方 法では,Lb を用いた略算法でも収束計算を行わ なければならないので,さらに簡単な方法が求 められる。本報では,付着解析によって種々の パラメータのひび割れ性状への影響を調べ,ひ び割れ幅,本数及びひび割れ間隔の簡単な算定 式を提案した。

2. 付着解析によるひび割れ幅算定法の概要

付着解析 ³⁾では、図-1に示す持続載荷を考 慮して K_t , τ_y を与えた付着応力 τ_t -すべりs 関係の bi-linear モデル ⁴⁾を用いる。付着解析に よるひび割れ幅算定のフローは図-2 の通りで、 付着解析によって鉄筋ひずみ分布を求め、その 全長にわたる積分値が壁の収縮変形である

(1- $n \times \epsilon_{sh} \times I$ (R:拘束率, ϵ_{sh} :乾燥収縮 L: 壁長) と等しいという条件より,ひび割れ位置 の鉄筋応力を求め,鉄筋ひずみとコンクリート ひずみの差を積分してひび割れ幅wは計算され

*1	大阪大学工学研究科	建築工学専攻	院生	(正会員)
*2	大阪大学工学研究科	地球総合工学科	助手	(正会員)
*3	大阪大学工学研究科	地球総合工学科	教授 🗌	C博(正会員)

る。1本目のひび割れが発生する時の乾燥収縮 値は式(1)から求めた。ここでひび割れ発生基準 になるコンクリート引張強度は参考文献⁵⁰に記 されている式(2)を用いた。

 $\varepsilon_{sh} = f_t / (E_c / (1 + \phi)) / R \tag{1}$

$$f_t = 0.6 \times (0.291 F_c^{0.637}) \tag{2}$$

 f_i :コンクリートの引張強度, F_e :コンクリート ト圧縮強度, E_e :コンクリートのヤング係数, ϕ :クリープ係数,R:拘束率

本解析法は断面を貫通するひび割れが発生 する RC 壁を対象とし、ひび割れ幅の算定対象 ひび割れは一軸拘束状態と見なせる壁高さ方 向中央付近のコンクリート表面のひび割れと している。拘束率、壁長及びクリープ係数の影 響を調べた解析例を図-3 に示す。図-3 より拘 東率などの要因がひび割れ幅の大きさには影 響しないことや2本目のひび割れ発生直前のひ び割れ幅が最も大きいことが分かる。従って, ひび割れ幅はこの値を計算の対象とした。また、 このひび割れ幅は拘束率、クリープ係数及び壁長 に加えて乾燥収縮にも影響されない⁶⁾が、ひび 割れ本数はそれらの要因に影響される。なお、 以下の解析におけるひび割れ本数は各要因に よるひび割れ本数の変化を詳しく調べるため に整数でなく、図-3中の(d)に示すように小数点 1桁まで扱った。

3. ひび割れ幅と本数の算定

3.1 ひび割れ幅の算定式の誘導

鉄筋比,鉄筋径,コンクリート強度,拘束率, 乾燥収縮,クリープ係数及び壁長の要因の中で 壁の乾燥収縮ひび割れ幅に及ぼす要因は前述 のようにコンクリート強度,鉄筋比及び鉄筋径 であるので,これら要因のひび割れ幅への影響 を付着解析法によって調べた。各要因の水準と 共通条件は以下の通りてある。

コンクリート強度(Fc):21, 24, 27, 30, 40N/mm²
鉄筋比(p_t):0.3, 0.4, 0.5, 0.6, 0.7%

3) 鉄筋径: D10, D13

4) 共通条件: 拘束率(R)=0.6, 壁長さ(L)=8000mm, 乾燥(図縮(ε_{st})=800×10⁶, クリープ係数(φ)=0.5

まず,付着解析によって D10 の場合の鉄筋比と ひび割れ幅の関係をコンクリート強度別に求め ると図-4 のようになる。図中の実線は基準条件 (Fc27, D10)の鉄筋比-ひび割れ幅(Wo)関係の回

-558-

帰式である。次にコンクリート強度の影響をコ ンクリート強度Fc21~40のひび割れ幅W(Fc21) ~W(Fc40)のFc27のひび割れ幅Wo(Fc27)に対す る比(W/Wo)で示すと図-5のようになり,鉄筋比 に関わらず W/Wo はほぼ一定なので、W/Wo の平 均値を求め、図中に実線で示している。W/Woの 平均値とコンクリート強度との関係を図-6 に 示す。同図中の直線は W/Wo の平均値とコンクリ ート強度 Fc との回帰式である。次に, D13 の場 合コンクリート強度 Fc と鉄筋比をパラメータ にひび割れ幅を計算し,図-4 に示した D10 の 場合の幅 W_{D10}との比 W_{D13}/W_{D10}を求めて,鉄筋径 によるひび割れ幅への影響を調べた。その結果 は図-7 のようになり、鉄筋比及びコンクリー ト強度による WD13/WD10 の変化は小さくほぼ一定 とみなせる。W_{D13}/W_{D10}の平均値を求めると 1.33 が得られた。以上のことをまとめてひび割れ幅 の計算式として式(5)が得られる。

$$W = (0.0018F_c + 0.048) \cdot p_t^{-1.79} \cdot K$$
 (5)

3.1.1 提案式の検討

式(5)の適合性を検討するために拘束率,壁長, 乾燥収縮及びクリープ係数などの解析条件は共 通とし、コンクリート強度,鉄筋比及び鉄筋径 を変えて付着解析及び式(5)を用いた計算によ ってひび割れ幅を求めた。その結果を図-8 に 示す。式(5)による計算結果は解析結果とほぼ一 致していることが分かる。

3.2 ひび割れ数と間隔の算定式の誘導

ひび割れ数はひび割れ幅と異なり,ひび割れ 幅に影響するコンクリート強度,鉄筋比,鉄筋 径の他に拘束率,乾燥収縮,クリープ係数及び 壁長にも影響される。そこで,各要因を変化さ せて付着解析によって求めたひび割れ数(n)の 基準条件下のひび割れ数(no)に対する比率 (n/no)を求め, n/no と各要因との関係を調べた。 基準条件及びパラメータは次の通りである。

1) 基準条件

D10, $F_c=27$ N/mm², $\varepsilon_{sh}=600 \times 10^{-6}$, R=0.5, $p_t=0.4$ %, $\phi=1.5$, L=6m

2) パラメータ

 p_t =0.2~0.7%, L=2~10m, F_c =21~40 N/mm², ε_{sh} =400~800×10⁻⁶, R=0.4~0.7, ϕ =0.5~3.0, 鉄筋 D10, 13

 p_t :鉄筋比(%), L:壁長(m), F_c :コンクリー ト強度(N/mm²), ε_{sh} :乾燥収縮(×10⁻⁶), R:拘 東率, ϕ :クリープ係数

基準条件における乾燥収縮とひび割れ幅の関係を **図ー9** に示す。乾燥収縮の基準条件である $\varepsilon_{sh} = 600 \times 10^{-6}$ の時のひび割れ本数は 2.1 本である。 なお、ここでひび割れ本数の増分を 0.1 として 解析をしたのでひび割れ本数は整数ではない。 ひび割れ数が A と B(A < B : A, B 整数)の間の値 の場合, B として読めばよい(**図ー9**参照)。

n/no と各要因との関係を図-10 に示す。鉄筋 比,壁長,乾燥収縮及び拘束率は正の線形関係 を,コンクリート強度とクリープ係数は負の線 形関係を示している。これらの関係を図中に示 す一次の回帰式で表した。また,D13 の n/no の

D10 に対する比率は 0.76 であった。これらをま とめると,ひび割れ数(n)を求める算定式として 式(12)が得られる。

$$n = K_{Pt} \cdot K_L \cdot K_{Fc} \cdot K_{sh} \cdot K_{\phi} \cdot K_R \cdot K_D \cdot n_0$$
(12)

ここで, $n_0 = 2.1$

 $K_D = 1.00$ (D10 の場合), 0.76 (D13 の場合) K_{pt} , K_l , K_{Fc} , K_{sh} , K_{ϕ} , K_{μ} , 及び K_D は図-10 中 に示している。

 K_{pt} :鉄筋比のひび割れ数への影響を表す係数 K_{L} :壁長さののひび割れ数への影響を表す係数 K_{Fc} :コンクリート強度ののひび割れ数への影響を表す係数 K_{sh} :乾燥収縮のひび割れ数への影響を表す係数 K_{g} :クリープ係数のひび割れ数への影響を表す係数 K_{R} :拘束率のひび割れ数への影響を表す係数 K_{R} :鉄筋径のひび割れ数への影響を表す係数

次にひび割れ間隔(*l*)の計算式を誘導する。基 準条件(L=6m)下のひび割れ間隔を*l*_oとすると, 次式の関係が得られる。

$$\frac{n}{n_o} = \frac{L/l}{6/l_o} = \frac{l_o}{l} \cdot \frac{L}{6}$$
(13)

$$l = \frac{L}{6} \cdot \frac{n}{n_o} \cdot l_o$$
$$= \frac{L}{4} \cdot K_L^{-1} \cdot K_{R}^{-1} \cdot K_{R}^{-1} \cdot K_{R}^{-1} \cdot K_{R}^{-1} \cdot K_{R}^{-1} \cdot K_{R}^{-1} \cdot I_o \qquad (14)$$

ここで、
$$\frac{L}{6} \cdot \frac{1}{K_{L}} \approx 1$$
であるので壁長の影響係数

 K_{t} は消えて,

$$l = K_{pt}^{-1} \cdot K_{Fc}^{-1} \cdot K_{sh}^{-1} \cdot K_{R}^{-1} \cdot K_{\phi}^{-1} \cdot K_{D}^{-1} \cdot l_{\phi}$$
(15)
ここで、 $l_{o} = 3.0 \text{m}$
 $K_{D}^{-1} = 1.0 \text{ (D10 の場合)}$
 $= 1.32 \text{ (D13 の場合)}$

3.2.1 提案式の検討

提案式の適合性を検討するために付着解析に よる解析値と提案式から求めた値を比較した。 鉄筋に D10 または D13 を用いた場合の付着解析 結果と式(12),式(15)による計算結果をひび割れ 本数は図-11 に、ひび割れ間隔は図-12 に示す。 両者とも計算値と解析値がほぼ一致していることが分かる。

図-11 ひび割れ本数の解析値と計算値の比較

4. まとめ

付着解析によって鉄筋コンクリート壁におけ る収縮ひび割れの幅,本数及び間隔を調べて, それらの簡便な算定式を導いた。

1) ひび割れ幅は鉄筋比(p_t),鉄筋径(D)及びコ ンクリート強度(F_c)に影響され、拘束率(R),ク リープ係数(ϕ),乾燥収縮(ε_{sh})及び壁長(L)に は影響されない。

ひび割れ幅の算定式として次式が得られた。

 $W = (0.0018F_c + 0.048) \cdot p_t^{-1.79} \cdot K$

ここで, K=1.0 (D10の場合) =1.33 (D13の場合)

2) ひび割れ本数nは鉄筋比,鉄筋径,コンクリート強度,拘束率,乾燥収縮,クリープ係数及

び壁長に影響される。これらの要因を考慮して 次の算定式が得られた。

$$n = K_{Pl} \cdot K_L \cdot K_{Fc} \cdot K_{sh} \cdot K_{\phi} \cdot K_R \cdot K_D \cdot n_0$$

ここで、 $n_0 = 2.1$
 $K_D = 1.00 (D10 の場合)$
 $= 0.76 (D13 の場合)$

 K_{pt} : \exists (6), K_{Fc} : \exists (7), K_{R} : \exists (8), K_{L} : \exists (9), K_{sh} : \exists (10), K_{ϕ} : \exists (11)

3) ひび割れ間隔1は鉄筋比,鉄筋径,コンクリ ート強度,拘束率,乾燥収縮及びクリープ係数 に影響され,壁長は影響しない。ひび割れ間隔1 の算定式として次式が得られた。

$$l = K_{pt}^{-1} \cdot K_{Fc}^{-1} \cdot K_{sh}^{-1} \cdot K_{R}^{-1} \cdot K_{\phi}^{-1} \cdot K_{D}^{-1} \cdot l_{o}$$

ここで、 $l_{o} = 3.0 \text{m}$
 $K_{D}^{-1} = 1.0 \text{ (D10 の場合)}$
 $= 1.32 \text{ (D13 の場合)}$

謝辞 本研究は平成 17 年度科学研究費(基礎研 究(c))の交付を受けた。

参考文献

- 1) 劉 勇,大野義照,中川隆夫:鉄筋コンクリ ート部材の乾燥収縮ひびわれ幅算定法の検 討,コンクリート工学年次論文集,Vol.25, No.1, pp.437~442, 2003
- 大野義照,中川隆夫,徐泰錫:鉄筋コンク リート壁における乾燥収縮ひび割れ幅の算 定法,日本建築学会学術講演梗概集,pp.643 ~644,2005
- 3) 徐泰錫, 大野義照, 中川隆夫: 鉄筋コンクリート壁の乾燥収縮ひび割れ幅への強度と鉄筋量の影響, 日本建築学会学術講演梗概集, pp. 641~642, 2005
- 4) 鈴木計夫,大野義照,李振宝,太田崇士:持 続荷重下における異型鉄筋の付着応力~す べり関係,コンクリート工学年次論文報告 集, Vol.14, No.2, pp.51~56, 1992
- 5) 日本建築学会:鉄筋コンクリート造建築物 の収縮ひび割れ制御設計:施工指針(案)・同 解説,2006
- 6) 日本コンクリート工学協会: コンクリート 構造物の収縮ひび割れの予測と制御, Vol. 43, No. 5, pp. 113~117, 2005