論文 剛飛翔体の高速衝突を受けて生じるコンクリート板の局部破壊に関 する基礎的研究

三輪 幸治*1·別府 万寿博*2·大野 友則*3·片山 雅英*4

要旨:本研究は,剛飛翔体がコンクリート板に高速で衝突した際に生じる局部破壊について, 実験および数値解析的に検討を行ったものである。まず実験を行うにあたり,高圧空気式飛 翔体発射装置を開発した。この装置を用いて板に対する高速衝突実験を行い,衝突速度や板 厚が破壊に及ぼす影響を調べた。次に,実験に対するシミュレーション解析を行い,高速衝 突を受ける場合のコンクリート材料のモデル化やひずみ速度効果の影響を検討した。解析と 実験結果を比較して,数値シミュレーションの妥当性について検討を行った。 キーワード:高速衝突,コンクリート板,局部破壊,数値シミュレーション

1. はじめに

テロ活動や不測の爆発事故によって生じる爆 発荷重がコンクリート構造物に作用すると、構 造物が爆風圧によって直接的な被害を受けるだ けでなく,破壊された構造物のコンクリート片 や金属破片等が高速度で飛散して、人命や構造 物に二次的被害をもたらす可能性がある。この ような飛散物の高速衝突によるコンクリートの 局部的な損傷・破壊を抑止する設計法を確立す るためには、その局部破壊の程度を精度よく評 価できる実験や解析法が必要である。しかし、 実験を行うためには特別な装置が必要であるこ とから、高速衝突を受けるコンクリートの局部 破壊に関する実験はあまり行なわれていないの が現状である。一方、コンピューターの発達と ともに、有限要素法や有限差分法を利用した数 値シミュレーションによる衝突解析が進歩して きている。例えば、伊東・片山らは衝撃解析コ ード AUTODYN を用いて、航空機の衝突を受け るコンクリート壁の破壊挙動を3次元モデルで シミュレート¹⁾し、大規模計算によるコンクリー トの局部破壊予測の可能性を示している。数値 解析においては,材料の構成モデルの種類や解 析パラメータの選択により,解析結果が大きく 影響を受けると考えられるが,コンクリートの 局部破壊に対するこれらの検討はほとんど行わ れていない。

本研究は、高圧空気式飛翔体発射装置を開発 し、剛飛翔体の衝突を受けるコンクリートの局 部破壊に関する実験および数値解析的検討を行 なったものである。まず、コンクリート板に対 する高速衝突実験を行い、衝突速度が破壊モー ドや表面破壊深さに及ぼす影響を調べている。 次に数値解析を行い、衝突解析においてコンク リート材料の構成モデルやひずみ速度効果が解 析結果に与える影響について検討を行っている。

2. 剛飛翔体の高速衝突実験

2.1 実験の概要

図—1 に、高圧空気式飛翔体発射装置の概要を示す。 装置は、エアコンプレッサー、増圧器、エアチャンバ ー、発射管(長さ:12m、内径:35mm)から構成さ れる。飛翔体は、エアコンプレッサーおよび増圧器で 圧縮された空気の高圧力によって発射される。飛翔体

*1	防衛大学校	建設環境工学科	理工学	学研究科前期	期課程学生	(正会員)
*2	防衛大学校	建設環境工学科	講師	博(工)	(正会員)	
*3	防衛大学校	建設環境工学科	教授	工博	(正会員)	
*4	㈱CRC ソリ:	ューションズ 科	学シス	テム事業部	博(工)	(非会員)

は写真—1 に示す寸法であり,頭部と尾部から構成されている。全質量は100g(頭部と尾部の質量はそれ ぞれ50g),頭部は鋼製で直径25mmの半球型,尾部 の材質はナイロン MC901 で直径35mmである。コン クリート板は,縦50cm×横50cmの寸法で,厚さ3~ 13cmの8 種類の供試体を作製した。コンクリート板 の強度はすべて25N/mm²である。供試体は,発射管 出口から1mの位置に置いた固定台に設置し,上下2 辺をクランプで固定した。設置した供試体に対して, 飛翔体を速度180~490m/sの範囲でコンクリート板 に衝突させた。飛翔体の速度は,発射管の出口に設置 した速度検出センサーで計測した。また、コンクリー ト板に生じた局部破壊の区分と表面破壊の深さを調 べた。表—1 に実験ケースを示す。

2.2 実験結果および考察

(1) 破壊モード

高速衝突によって生じるコンクリート板の局 部破壊は、図---2に示すように表面破壊、裏面剥 離,貫通の3種類のモードに区分される²⁾。写真 ---2に、コンクリート板に生じた表面破壊、裏面 剥離,貫通の状況を示す。写真---2 は板厚 8cm で、(a)は表面破壊、(b)は裏面剥離、(c)は貫通 のケースを示している。衝突速度 210m/s では, 表面に直径 10cm 程度の表面破壊が生じ, 裏面に は放射状のひび割れが発生した。衝突速度 310m/s になると、表面破壊とともに裏面剥離が 生じていることがわかる。衝突速度 415m/s にな ると速度 310m/s のときより大きな離面剥離が生 じるとともに、貫通した。すなわち、局部破壊 の大きさは、同じ板厚、強度であっても衝突速 度によって変化することがわかる。なお、写真 —3 は裏面剥離した断面内の損傷を示している が、板の内部には斜めに発達したひび割れも確 認できる。

写真--4は,表面破壊の破壊状況(板厚 10cm, 衝突速度 310m/s)を高速ビデオカメラで撮影 (12500 コマ/秒)した映像である。これより, 衝突後 0.64ms においてコンクリートは粉末状に 飛散し,飛翔体胴体部は完全に破壊しているこ とがわかる。**写真--5**は,実験後の供試体と飛翔

(a) コンクリート板接触部 (b) 飛翔体頭部
写真—5 衝突後の飛翔体の状況

体の損傷を示している。写真—5(a)より, コン クリート板と飛翔体との接触部には飛翔体頭部 の形状がそのまま残っており, 飛翔体はコンク リートに接触した状態を保ったまま押し込むよ うに進行したことを示している。写真—5(b)よ り, 衝突後の飛翔体頭部には線状の傷が深くつ いており, コンクリートとの接触間に大きな摩 擦が働いたものと考えられる。

(2) 衝突速度と破壊モードの関係

図-3に、衝突速度と板厚の関係における破壊 モードの発生状況を示す。図には、修正 NDRC 式³⁾による裏面剥離と貫通の限界線も示してい

図—4 衝突速度~表面破壊深さ関係

る。修正 NDRC 式は,飛翔体の質量,直径,衝 突速度およびコンクリートの強度を入力して, 限界厚を求めるものである。本実験では,胴体 部が衝突の際に破壊したため,式の適用に当た っては飛翔体頭部の質量 50gのみを考慮してい る。図より,実験と修正 NDRC 式はほぼ一致し ており,衝突速度の増加または板厚の減少にし たがって,局部破壊モードは表面破壊,裏面剥 離,貫通の順に変化することがわかる。図—4 に, 衝突速度と表面破壊深さ関係を示す。これより, 表面破壊深さは飛翔体の衝突速度の増大ととも にほぼ線形に増加することがわかる。

	表—2	材料の構成	或モデル	
材料	状態方程式	せん断降伏	引張破壊	エロージョンひずみ
コンクリート	緣形	Drucker-Prager	cut-off	2.5
鋼材	緣形	Von-Mises	破壊しない	なし

表―3 解析ケース					
71-21-21-21-21-21-21-21-21-21-21-21-21-21	ひずみ速度が	効果(倍率)	() <u>東</u> 飯	1/mm²)	
いりの送法(1/8)	圧縮	引張	圧縮	引張	
10 ⁻⁵ (静的)	1	1	25.0	2.5	
10-1	1.25	1.70	31.4	4.25	
10 ⁰	1.43	2.44	35.9	6.11	
10 ¹	1.69	4.05	42.4	10.15	

表—4 解析による破壊モードと表面破壊深さ

71.487.7.38.88	線形型		茾糠形型		
いりの延度	破壊モード	表面破壊深さ(cm)	破壊モード	表面破壊深さ(cm)	
なし(静的)	裏面剝離	0.5	裏面剝離	2.5	
10 ⁻¹	裏面刺離	0.5	裏面刺離	2.1	
10 ⁰	裏面剝離	0.5	裏面刺離	2	
10'	表面破壞	0.5	表面破壊	1.5	

3. 数値シミュレーション

3.1 解析モデル

剛飛翔体の高速衝突を受けるコンクリートの 局部破壊に関して数値解析的に検討した例は少 ないので、まずコンクリートのモデル化につい て基本的な検討を行った。次に、全実験ケース のシミュレーションを行った。なお、解析には 衝撃解析コード AUTODYN Ver.5.2 を用いて2次 元軸対称系でモデル化した。解析の対象は、飛 翔体速度 310m/s, コンクリート板厚 8cm のケース (破壊モード:裏面剥離)である。図—5 に解析モデ ルを,表—2 に材料の構成モデルを示す。コンクリ ート板は1要素あたり 2.5mm×2.5mm の大きさで 3200 要素に分割した。飛翔体頭部は 28 要素に分 割した。コンクリートの構成モデルには,図—6 に示 す線形および非線形型の Drucker-Prager 降伏条件 を用いた。また,貫通現象の表現には,貫通を伴う 解析においてよく用いられるエロージョンという方法 を用いた。すなわち,変形した要素の相当ひずみが 2.5 を超えた場合には,その要素のせん断強度をな くすものである。ただし,体積ひずみに応じた圧力 は生じるものとしている。鋼材には Von-Mises の降 伏条件を用いた。

材料が衝撃荷重を受けると大きなひずみ速度を 示すことがわかっている²⁾ので,解析モデルにもひ ずみ速度に対応した強度の増加を反映させる必要 がある。写真-4より,コンクリートの破壊は1ms前 後で終了していること,およびコンクリートは一般 に数100~数1000µ程度のひずみで損傷,破壊す ることより,実験の範囲内で生じるひずみ速度は, 10⁻¹~10²(1/s)のオーダーと考えられる。ひずみ速度 効果によるコンクリートの一軸圧縮および引張強度 増加の評価式として,以下に示す藤掛および Ross らの式がある。

√^{3J₂} =√σ,σ, - ³/σ, - σ, 𝑘 動的圧縮強度の増加率:藤掛らの式⁴)

$$\frac{f_{cd}'}{f_{cs}} = \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_s}\right)^{0.006 \left[Log\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_s}\right)\right]^{1.05}}$$
(1)

ここに, *ἐ*,:静的載荷時のひずみ速度[1.2× 10⁻⁵(1/s)], *ἐ*:急速載荷時のひずみ速度(1/s), *f*[']_a: 静的載荷時の圧縮強度(N/mm²), *f*[']_a:動的載荷時 の圧縮強度(N/mm²)である。

動的引張強度の増加率:Rossらの式⁵⁾

$$\eta(\dot{\varepsilon}) = \frac{f'_{td}}{f'_{ts}} = \exp\left[0.00126\left(Log\frac{\dot{\varepsilon}}{\dot{\varepsilon}_s}\right)^{3.73}\right]$$
(2)

ここに, $\dot{\epsilon}_i$:静的載荷のひずみ速度 $[1.0 \times 10^{-7}(1/s)]$ である。

本解析では、コンクリートの引張強度を圧縮強度

解析結果の比較

25N/mm²の 1/10 と仮定した。また, 10⁻⁵~10¹(1/s) の範囲で4種類のひずみ速度を仮定して, これらの 式より求めた動的圧縮および引張強度の増加を構 成則に反映させた。表--3 に解析ケースを示す。

3.2 解析結果

解析結果を図—7 および表—4 に示す。まず,図— 7の破壊状況をみると、いずれのひずみ速度におい ても線形モデルにおけるひび割れ分布は、非線形 モデルに比べ小さくなっていることがわかる。また、 表面破壊深さについても、非線形モデルの方が線 形モデルよりも大きく、実験値にも近いことが わかる。この理由は、実験では衝突時にかなり 大きな圧力が生じると考えられるが(写真—3, 4参照)、線形モデルの方が非線形モデルに比べ、 高い静水圧において降伏応力が大きくなるため、 降伏しにくいことが考えられる。ちなみに、大 きな側圧を受けるコンクリートの破壊曲線は非 線形モデルに近いことが報告されており⁴⁾、本解 析結果は妥当であると考えられる。また、ひず み速度が上昇するにつれて、線形および非線形 モデルともに、破壊の領域がしだいに局部的に なっていることがわかる。とくに、板の裏面に おけるひび割れが大幅に低減されている。この 原因としては、表—3に示すように同じひずみ速 度を与えたとき、圧縮よりも引張強度の増加が著し いためと考えられる。

以上の検討より,構成モデルは非線形モデル, ひずみ速度は 10⁰(1/s)を用いた場合が最もよく実 験をシミュレートしていることがわかる。

3.3 実験のシミュレーション解析

ここでは、前節で検討した材料モデルを用い て、全ての実験ケースについてシミュレーショ ンを行った。図---8に、解析によって得られた破 壊モードを実験結果と比較して示す。図から, 表面破壊については,解析結果は実験結果とほ ぼ一致していることがわかる。一方、貫通およ び裏面剥離に対しては、衝突速度 200m/s で板厚 3cm のときの貫通, 衝突速度 300m/s で板厚 8cm, 400m/s で 9cm のときの裏面剥離を除き,解析結 果は破壊モードを小さめに評価している。この 理由は、解析に用いたコンクリートの引張強度 値の設定が大きかったことによると考える。図 --9は、衝突速度~表面破壊深さ関係を示してい る。これより解析による表面破壊深さは、実験 値とほぼ一致している。図—10には、衝突速度 300m/s のときに、板厚が破壊に及ぼす影響につ いて示している。図―10より、板厚が大きくな ると、表面破壊深さが減少するとともに、裏面 のひび割れ破壊も小さくなることがわかる。

以上より,適切な数値解析モデルを構築すれ ば高速衝突を受けるコンクリートの表面破壊深 さや破壊モードを比較的良好にシミュレートで きるといえる。

4. 結言

本研究は、剛飛翔体の高速衝突を受けてコン クリート板に生じる局部破壊について検討する ために,実験および数値解析的検討を行なった ものである。本研究で得られた成果を要約する と以下のようになる。

- (1) 高圧空気式飛翔体発射装置を開発して、 剛飛翔体の高速衝突を受けるコンクリ ート板の局部破壊について調べた。衝突 速度の増大により、表面破壊深さはほぼ 線形に増加し、局部破壊モードは表面破 壊、裏面剥離、貫通と移行する。
- (2) 2 次元軸対称系モデルを用いて、コンク リートの局部破壊解析における構成モ デルやひずみ速度効果の影響を検討し た。その結果、コンクリートに非線形型 の Drucker-Prager 降伏条件式およびひず み速度効果を適切に考慮することで剛 飛翔体の高速衝突に対するコンクリー トの破壊現象を比較的良好にシミュレ ートできる。

参考文献

- M.Itoh, M.Katayama and R. Rainsberger : Computer simulation of an F-4 Phantom crashing into a reinforced concrete wall, Computational Ballistics II, pp.207-217, 2005
- 構造物の衝撃挙動と設計法,土木学会構造工 学シリーズ 6, pp.275~292, 1994.1
- R.P.Kennedy : A review of procedures for the analysis and design of concrete structures to resist missile impact effects, Nuclear Engineering Design, 37, pp.183-203, 1976
- 4) 藤掛一典,上林勝敏,大野友則,水野淳,鈴 木篤:ひずみ速度効果を考慮した三軸応力下 におけるコンクリートの直交異方性構成モ デルの定式化,土木学会論文集,No.669, V-50,109-123, 2001.2
- Ross, C.A, Thompson, P.Y. and Tedesco, J.W. : Split-hopkinson pressure-bar tests on concrete and mortar in tension and compression, ACI Material Journal, V.86,No.5pp.475-481, September October,1989