論文 3次元 FEM モデルを用いた CFT 柱における鋼管の局部座屈解析

内藤 英樹^{*1}·松本 大輔^{*2}·秋山 充良^{*3}·鈴木 基行^{*4}

要旨:正負交番載荷を受ける CFT 柱では, 鋼管の局部座屈後に鋼管のはらみ出しが進展する ことで座屈部周辺に亀裂が生じる。そこで,本研究では,角形断面の CFT 柱を対象として, 3 次元 FEM モデルによる鋼管の局部座屈解析を行った。そして,1)CFT 柱では鋼管のはらみ 出しが進展することで座屈部のひずみ履歴にある変化点が見出せること,2)この点を終局と すれば鋼管の亀裂発生に対して安全側の靱性能評価が可能になること,を示した。 キーワード:コンクリート充填鋼管(CFT)柱,鋼管の局部座屈,FEM 解析,靱性能評価

1. はじめに

コンクリート充填鋼管(CFT)柱では、コンクリ ートが鋼管内側への座屈変形を抑制するため、 鋼管の局部座屈後も優れた耐荷力と靭性能を有 する。このような CFT 柱の靭性能評価に関し、 佐藤¹⁾は、最大荷重の95%を維持する最大変位点 (以下,95%耐力点)を終局とした角形および円形 断面の CFT 柱の靭性能評価式を提示している。 一方で、村田ら²⁾は、90%耐力点を終局とした円 形断面の CFT 柱の靭性能評価式を提案している。 これに対して、鋼管の局部座屈挙動に着目した 終局点を定めることができれば、鋼管の座屈性 状を考慮した角形および円形断面の CFT 柱の統 一的な靭性能評価が可能になる。

正負交番載荷を受ける CFT 柱では、鋼管の局 部座屈挙動に着目することで、1)局部座屈が生 じる点、2)鋼管のはらみ出しにより座屈部周辺 に亀裂が生じる点、の損傷状況を見出すことが できる²⁾。そこで、本研究では、角形断面の CFT 柱を対象として、FEM モデルを用いた鋼管の局 部座屈解析を行い、上記 2)の亀裂発生に対して 安全側の評価となる終局点を別途定める。そし て、既往の CFT 柱の正負交番載荷実験と FEM 解 析との比較により、提案する終局点の妥当性を 検討する。

図-1 CFT 鋼管の座屈解析モデル

2. FEM モデルによる鋼管の局部座屈解析 2.1 FEM モデルの概要

著者ら³⁾は,SRC 柱における H 形鋼の局部座 屈に着目し,3 次元 FEM 解析を行うことで正負 交番載荷実験での H 形鋼の座屈発生時変位やそ の座屈性状が妥当に再現できることを確認した。 本研究では,鋼管の局部座屈性状と CFT 柱の靭 性能の評価にのみ着目するため,参考文献 3)で 提示した解析モデルを参考に,CFT 柱における 鋼管を図-1 でモデル化する(以下,CFT 鋼管)。 解析は FBM 解析プログラム MARC を用いた有 限変位解析とし,鋼管をシェル要素でモデル化 した。図-1に示すように,要素寸法は断面幅の

*1	東北大学	大学院工学研究科土木工学専攻助手修(工)(正会員)
*2	東北大学	大学院工学研究科土木工学専攻
*3	東北大学	大学院工学研究科土木工学専攻助教授 博(工) (正会員)
*4	東北大学	大学院工学研究科土木工学専攻教授 工博 (正会員)

		せん断ス パン(mm)	断面寸法 (mm)	鋼管厚 (mm)	幅厚比	軸力比 ^{*1}	補剛材の 有無
崎野ら ⁵⁾	CIIS3-2	-		2.17	46	0.18	なし
	CIIIS3-2			2.96	34	0.19	"
	CIVS3-2		4.21	24	0.19	"	
(CIIS3-3	300	100×100	2.17	46	0.29	"
	CIIIS3-3			2.96	34	0.28	"
	CIVS3-3			4.21	24	0.28	"
	CIIS3-4			2.17	46	0.37	"
	CIIIS3-4			2.96	34	0.37	"
	CIVS3-4			4.21	24	0.38	"
	CIIS3-5			2.17	46	0.46	11
	CIIIS3-5			2.96	34	0.46	"
	CIVS3-5			4.21	24	0.47	
岩佐ら ^の	S-1	840	280×280	6.0	47	0.20	"
	S-2					0.20	あり ^{**2}

表-1 供試体諸元

※1 軸力比:作用軸力/(コンクリート断面の降伏軸力+鋼管断面の降伏軸力)

※2 S-2供試体では鋼管内部に縦リブとして厚さ3mm,幅32mmの鋼板を各面に2枚配置しているの。

1/8 とし(全体で 800 要素程度), 柱基部の境界条 件は固定とした。コンクリートの効果は, 鋼管 内部に圧縮剛性のみを与えたトラス要素(以下, 圧縮トラス要素)を配置することで考慮し, これ により鋼管内側への座屈変形を抑制する. 圧縮 トラス要素では, 圧縮側にコンクリートの弾性 係数を与え, 引張は無視した。また, 鋼管内部 に補剛材を設置する場合には, 図-1 に示すよう に補剛材をシェル要素でモデル化し, 面外変形 を拘束する³⁾。

鋼材の応カーひずみ関係は移動硬化則を用い たバイリニアモデルとし、降伏後剛性は初期剛 性の 1/100 を仮定した。なお、佐藤ら⁴⁾は、軸力 と曲げを受ける円形断面の CFT 柱を対象として、 鋼管とコンクリートの分担力に関する実験的研 究を行っている。参考文献 4)を参照する限りで は、部材降伏後に鋼管が負担する軸力の分担力 は、軸力のみを与えた場合の分担力と概ね等し いことが示されている。そこで、一定軸力下で の CFT 鋼管の局部座屈挙動を検討する本研究で は、予め軸力のみを載荷した弾性計算を行い、 局部座屈後も鋼管とコンクリートの分担力は変 化しないとの仮定を設けた。なお、軸方向に対

表-2 局部座屈発生時変位の比較

		降伏 変位 <i>δ,</i> (mm)	FEM 解析 (mm)	実験 結果 (mm)
崎野ら ⁵⁾	CIIS3-2	1.0	2.0	3.0
	CIIIS3-2	1.0	3.0	3.0
	CIVS3-2	1.0	3.0	4.5
	CIIS3-3	1.0	2.0	1.5
	CIIIS3-3	1.0	2.0	1.5
	CIVS3-3	1.0	3.0	2.4
	CIIS3-4	1.0	2.0	1.5
	CIIIS3-4	1.0	2.0	1.5
	CIVS3-4	1.0	2.0	3.0
	CIIS3-5	1.0	2.0	1.5
	CIIIS3-5	1.0	2.0	1.5
	CIVS3-5	1.0	2.0	1.5
岩佐らの	S-1	4.8	9.6	9.6
	S-2	4.8	24.0	34.4

してはコンクリートをモデル化せず,コンクリ ートの曲げ圧縮力により鋼管に生じる断面力の 影響は無視した。

2.2 解析モデルの妥当性の検討

既往の CFT 柱の正負交番載荷実験との比較を 行うことで,図-1の FEM モデルの妥当性を検

図-2 CFT 鋼管における局部座屈性状

討する。解析対象は、実験報告に鋼管の局部座 屈発生点が明記されている 14 体の供試体とした。 これらの供試体諸元を表-1 に示す。解析におけ る載荷パターンは、実験概要を参考に、降伏変 位 & を基準として、崎野ら⁵⁰の供試体では 3 回, 岩佐ら⁶⁰の供試体では 1 回の交番載荷とした。な お、これらの供試体では鋼管が載荷冶具に接合 されているため、柱の変形は躯体変形のみを考 慮した。

実験結果とFEM解析による座屈発生時変位の 比較を表-2に示す。なお、FEM 解析における 鋼管の局部座屈発生点は、鋼管内側と外側のひ ずみが分岐する載荷ステップとした。これらの 比較において、補剛材を設置した S-2 供試体では 実験結果を過小評価したが,その他の供試体で は 18,程度の誤差で座屈発生時変位を評価する ことができた。また、参考文献 6)の岩佐らの供 試体では、鋼管のはらみ出し変位が最も大きく なる点(以下,座屈頂部)の柱基部からの高さが報 告されており、S-1供試体では正側・負側ともに 約80mm, S-2 供試体では正側で約150 mm(負側 で約70mm)となった。これに対して、FEM 解析 により得られた座屈頂部の位置は、正側・負側 ともに S-1 供試体では 87mm, S-2 供試体では 105mm となった。このように、実験結果と解析 結果の座屈発生時変位や鋼管の座屈頂部の位置

が概ね一致することから, 図-1 に示す簡易な解 析モデルでも CFT 鋼管の局部座屈性状が評価で きることが確認された。なお, 崎野らの実験報 告 5)では,荷重一変位関係における座屈発生点 は明記されているが, 鋼管の局部座屈性状や CFT 柱の損傷状況に関する詳細な記述はない。

3. 鋼管の局部座屈挙動に着目した終局点の設定 3.1 局部座屈後における鋼管の座屈性状

表-1 の正負交番載荷実験との比較により, FEM モデルの妥当性を確認した。そこで,図-1 の CFT 鋼管の解析と圧縮トラス要素を除いた場 合(以下,裸鋼管)の解析を比較することで,コン クリートの有無が局部座屈後の鋼管の座屈性状 やCFT 柱の靱性能に及ぼす影響を検討する。

解析対象は, 表-1に示す崎野ら⁵⁾の CIIIS3-2 供試体とする。CFT 鋼管では, 鋼管内部に圧縮 トラス要素が配置されることで, 局部座屈後に おいても図-2の局部座屈性状となった。さらに, 図-3の荷重-変位関係に示すように, CFT 柱で は, 鋼管の局部座屈後も優れた塑性変形能を有 しており, これを評価する際には, 図-1の圧縮 トラス要素などによる鋼管の座屈変形を抑制し たモデル化が必要であることが示された。以下 では, FEM 解析の結果に対し, 局部座屈後の塑 性変形能に期待した終局点を設定する。

3.2 終局点の設定

図ー1の FEM 解析により得られる CFT 鋼管の 内側と外側のひずみ履歴を図ー4 に示す。鋼管の 局部座屈後は、座屈頂部でのはらみ出し変位 *δ*₄₄ により鋼管内側と外側のひずみに差が生じる。 FEM 解析の結果により,はらみ出し変位 δ_{def} が大 きくなることで座屈頂部での鋼管外側のひずみ 履歴に変化点を見出すことができた。除荷・再 載荷により鋼管の外側に生じるひずみの増分量 (以下, ひずみ振幅)Δεout は, CFT 柱が水平荷重 を受けることで生じる圧縮ひずみ増分Δεben と鋼 管のはらみ出しによる板の曲げ引張ひずみ増分 $\Delta \varepsilon_{buc}$ の和で表される。 $\mathbf{2}-4$ に示すように,局 部座屈後の交番載荷に伴い鋼管のはらみ出し変 点が存在する。このとき、図-4に示される鋼管 内側と外側のひずみ履歴は位相が逆転する。

異なる供試体諸元に対して,図-4のひずみ振 幅Δε_{out}の変化点が鋼管の亀裂発生よりも安全側 の評価を与えることが確認できれば、この点を 亀裂発生の前段階である終局点として設定する ことができる。そこで、以下では、ひずみ振幅 $\Delta \varepsilon_{out}$ の変化点を終局とした FEM 解析の結果と CFT 柱の正負交番載荷実験の結果とを比較する ことで、この終局点の設定が鋼管の亀裂発生に 対して安全側の評価となることを確認する。

-40

- 3.3 既往の正負交番載荷実験との比較
 - (1) 終局変位の算定

表-1 の供試体に対して, FEM 解析と実験結 果との比較を行った。一例として、軸力比 0.2 程 度の供試体の結果を図-5 および図-6 に示す。 これらの図は,実験結果の荷重-変位関係上に, FEM 解析による終局変位を示した。なお、崎野 らの供試体ではいずれも亀裂は生じておらず⁵⁾,

図-4 終局点の定義

水平変位 (mm)

b) S-2 (補剛材あり)

-20 0 20 40 水平変位 (mm) a) S-1 (補剛材なし)

岩佐ら。の実験結果との比較 図-6

		<u>終局変位δ</u> , 座屈発生時変位δ _{buc}	<u>はらみ出し変位8_{def}</u> 断面幅 B	座屈頂部での ひずみ振幅∆ <i>ε</i> in
崎野ら ⁵⁾	CIIS3-2	1.5	0.033	0.0106
	CIIIS3-2	1.3	0.052	0.0195
	CIVS3-2	2.0	0.084	0.0360
	CIIS3-3	1.0	0.016	0.0197
	CIIIS3-3	1.5	0.071	0.0271
	CIVS3-3	1.3	0.048	0.0309
	CIIS3-4	1.0	0.029	0.0228
	CIIIS3-4	1.5	0.062	0.0167
	CIVS3-4	1.5	0.039	0.0219
	CIIS3-5	1.0	0.042	0.0259
	CIIIS3-5	1.0	0.064	0.0128
	CIVS3-5	1.5	0.055	0.0279
 岩佐ら ^の	S-1	2.5	0.088	0.0125
	<u>S-2</u>	1.6	0.102	0.0328

表-3 終局点における鋼管の局部座屈性状

実験装置の制約により載荷を終了したものと推 察される。鋼管の幅厚比をパラメータとした崎 野らの実験結果では、幅厚比が小さくなるのに 伴い CFT 柱の耐力低下は緩やかになった。これ に対して、FEM 解析により得られる終局変位は、 幅厚比が小さくなるのに伴い大きな終局変位を 算定した。また、鋼管内部の補剛材の有無をパ ラメータとした岩佐らの実験結果でも、補剛材 の設置により CFT 柱の靱性能が向上しており、 FEM 解析も同様の結果となった。

図-5 および図-6 の実験結果では、図-4の 終局点よりも早期に鋼管の座屈頂部での亀裂は 生じなかった。なお、図-6の岩佐ら^のの実験結 果では、この終局点の後に隅角部(溶接部)での亀 裂が生じている。図-4の終局点の設定は隅角部 (溶接部)の亀裂発生に着目したものではないた め、この箇所での亀裂発生に対する終局点の設 定は今後の課題である。

FEM 解析による座屈発生時変位 δ_{buc} と終局変 位 δ_u の比 δ_u/δ_{buc} を表-3 に示す。鋼管が薄い場 合には、局部座屈後にはらみ出し変位 δ_{def} が急激 に増加するため、崎野らの CIIS3 シリーズ(幅厚 比 46)では CIIS3-2 (軸力比 0.2)を除いて $\delta_u \ge \delta_{buc}$ が等しくなった。一方で、鋼管が厚い場合には、 座屈抵抗性の向上とともに座屈後も後座屈強度 が期待できるため、はらみ出し変位 δ_{def} の増加が 緩やかとなる。このとき、水平荷重による鋼管 の曲げ圧縮ひずみ $\Delta \varepsilon_{ben}$ が大きくなり、図ー4の 定義では大きな終局変位が算定される。このた め、CIVS3 シリーズ(幅厚比 24)では δ_u/δ_{buc} が 1.3 ~2.0 となった。また、軸力比を増加させた場合 には、局部座屈後のはらみ出し変位 δ_{def} の増加が 顕著となるため、いずれの幅厚比の場合にも δ_u/δ_{buc} の値は小さくなった。

一方で、鋼管内部に補剛材を設置することで、 座屈抵抗性や後座屈強度の向上が図れる。補剛 材の有無をパラメータとした岩佐らの供試体で は、補剛材の設置により δ_u/δ_{buc} の値が小さくな った。この供試体では、補剛材を1面に対して2 箇所に設置することで局部座屈発生時変位の増 加が顕著に表れたが、補剛材の設置間隔などの 条件が異なる場合には、 δ_u/δ_{buc} の変化に関して 別途検討が必要である。

次に、交番載荷の繰返し回数が終局変位に及 ぼす影響を考察する。図-5a)と図-6a)に示す CIIS3-2供試体とS-1供試体は、せん断スパン比、 軸力比、および鋼管の幅厚比が概ね等しく、 CIIS3-2供試体で1回、S-1供試体で3回の交番 載荷としている。これらの終局時の部材回転角 (終局変位/せん断スパン)はそれぞれ 0.01 および 0.029 となり、両者の値が大きく異なった。表一 3に示す FEM 解析による終局時のはらみ出し変 位 δ_{hf} は、断面幅の 1/10 に達する供試体もあり、 図-1の FEM 解析では繰返し回数が鋼管の局部 座屈の進展に影響を及ぼすものと考えられる。 これに対して,既往の CFT 柱の靭性能評価では, 佐藤¹⁾が 95%耐力点(角形・円形断面),村田ら²⁾ が90%耐力点(円形断面)を終局としている。これ らの終局点は、いずれも軸変位が急激に増加す る点に着目しており、この終局変位以下であれ ば繰返し載荷による耐力低下は無視できるため, 得られる終局変位は変化しない^{2),7)}。図-4の定 義では、繰返し回数により終局変位が異なるこ とから、この終局点の設定は佐藤や村田らの手 法よりも大きな塑性変形能を評価するものであ る。しかし、繰返し回数が1回の場合でも、図 -4 の終局点が亀裂発生よりも安全側であれば, 既往の評価手法よりも大きな塑性変形能を期待 した CFT 柱の耐震設計が可能となる。そこで、 FEM 解析の座屈頂部に生じるひずみ振幅と既往 の低サイクル疲労評価式を比較することで、こ の終局点の妥当性を確認する。

(2) 座屈頂部の亀裂発生に対する安全性の確認

FEM 解析では、鋼管の座屈頂部に大きなひず み振幅が生じた。表-2に示す終局時の座屈頂部 のひずみ振幅 $\Delta \varepsilon_{in}$ は 0.01~0.036 であり、はらみ 出し変位δ_{def}が大きい CIVS3-2 供試体や S-2 供試 体でひずみ振幅 $\Delta \epsilon_{in}$ は 0.035 程度となった。齋藤 ら⁸⁾は、円形断面の CFT 柱の正負交番載荷実験 において、鋼管の亀裂が発生する直前の載荷ス テップでは、座屈頂部に生じるひずみ振幅が 0.1 ~0.2 程度に達することを報告している。また, 齋藤ら⁸⁾が提案する鋼材の低サイクル疲労評価 式では、ひずみ振幅 0.1 の繰返し載荷を受ける鋼 材が疲労破壊に要する繰返し回数は10回程度と なった。表-3に示す終局時のひずみ振幅Δεmは, これらの実験結果や評価式による亀裂発生時の ひずみ振幅の 1/10~1/3 程度であり, 14 体の供試 体諸元に対して図-4の終局点は鋼管の座屈部 での亀裂発生よりも安全側となった。

4. まとめ

本研究では、角形断面の CFT 柱を対象として、 3 次元 FEM モデルによる鋼管の座屈解析を行っ た。そして、座屈後の鋼管のひずみ履歴に着目 した終局点を設定し、既往の実験結果や低サイ クル疲労評価式との比較より、この終局点が座 屈頂点での亀裂発生よりも安全側になることを 確認した。今後は、この終局点の設定を円形断 面にも適用し、その妥当性を検討する。

参考文献

- 佐藤孝典:充填鋼管コンクリート構造柱の変 形性能評価式の提案,コンクリート工学年次 論文報告集, Vol.19, No.2, pp.945-950, 1997.7
- 村田清満,安藤真人,渡邊忠朋,木下雅敬: コンクリート充填円形鋼管柱の耐荷力と変 形性能の評価,構造工学論文集, Vol.44A, pp.1555-1564, 1998.3
- 内藤英樹、白濱永才、高田真人、鈴木基行: 正負交番荷重を受ける SRC 柱で生じる H 形 鋼の局部座屈性状、コンクリート工学年次論 文集、Vol.27, No.2, pp.1219-1224, 2005.6
- 4) 佐藤孝典,斉藤豊,鈴木計夫,遠藤博:鋼管 コンクリート柱における鋼とコンクリートの 分担力に関する実験,コンクリート工学年次 論文報告集, Vol.16, No.2, pp.605-610, 1994.7
- 5) 崎野健治、富井政英:コンクリート充填角形 鋼管柱の復元力特性に及ぼす鋼管幅厚比の 影響、コンクリート工学年次講演会講演論文 集、Vol.3、pp.305-308、1981.7
- 6) 岩佐高吉、小林薫: コンクリート充填角形鋼管柱の変形挙動に関する実験的研究、コンクリート工学年次論文集、Vol.26, No.2, pp.247-252, 2004.7
- た谷宏二,荒木慶一,西本信哉:繰返し曲げ を受ける柱要素の軸ひずみの収束現象と発 散現象,日本建築学会構造系論文集,No.494, pp.115-122, 1997.4
- 8) 齋藤智也, 舘石和雄: CFT 部材の鋼管のひず み挙動に関する研究, コンクリート工学年次 論文集, Vol.22, No.3, pp.1045-1050, 2000.7