論文 凍結防止剤が散布される RC 道路橋の塩害進展メカニズムの解明

平野 誠志*1・宮里 心一*2・山本 恵理子*3・武内 道雄*4

要冒:積雪寒冷地の道路橋では,凍結防止剤による塩害が進行している。特に劣化が進んだ RC道路橋の調査によれば,鉄筋下面に腐食が集中する特徴が確認された。本研究では,RC 道路橋の塩害に着目し,実構造物における実態を踏まえ,現場を模擬した実験により鉄筋腐 食の速度分布を把握し,劣化進行メカニズムを解明した。そのため,2軸方向に分割された 鉄筋を2段に配置し,4水準にかぶりコンクリート中の塩分量を変化させた供試体を用い, 実験的検討を行った。その結果,かぶりコンクリートの浮き・はく離後に,鉄筋下面の腐食 が著しく増加することを明らかにした。

キーワード: 塩害, RC 道路橋, 凍結防止剤, 鉄筋腐食進展メカニズム, 分割鉄筋

1. はじめに

積雪寒冷地の道路橋では、凍結防止剤による 塩害が進行している。特に、伸縮装置からの漏 水範囲が拡大しやすい桁端部における塩害腐食 の発生が顕著である。この塩害を受けた道路橋 の長寿命化を図るためには、劣化状況を把握し た適切な維持管理が必要である。すなわち、補 修を行う際も、単に腐食部分のみを復旧するの ではなく、対象橋梁の塩害環境、塩分浸透状況 や腐食状況などを把握するための調査を実施し た上で、効率的な補修工事を実施することが重 要である。

今回, 筆者らは, 凍結防止剤が散布される RC 道路橋の劣化状況を調査した。その中で, 多く の損傷現場で, 床版下面の鉄筋腐食が, コンク リート表面側に配置された鉄筋(下部鉄筋)の 下面に集中して発生する特徴を確認した。

ここで、塩害進展の一般的形態は知られてお り、これまでにも鉄筋腐食を個別に扱った事例 はある。しかしながら、実際の損傷形態に即し た塩害進展メカニズムを解析・検討した例は少 ない。また、塩害進展メカニズムに即した合理 的な塩害対策工を検討するためには、塩害の進 展経過と鉄筋腐食の関係などを解明することが 必要である。

本論文では,RC 道路橋の塩害に着目し,実橋 梁における実態を踏まえ,現場を模擬した供試 体を作製し,鉄筋腐食の速度分布を把握して, 鉄筋腐食の進行メカニズムを解明した。

2. RC 道路橋での実態調査

実橋梁を模擬した供試体を作製するため,は じめに実態調査の結果を整理する。

橋梁上に散布された凍結防止剤は,路面水と して大部分は排水管等から流出する。しかしな がら,一部は伸縮装置から漏水して,コンクリ ート表面を移動し,塩分を付着させる。この付 着した塩分が塩害を誘発する。漏水による塩分 付着状況の概要を図-1に示す。

塩害損傷の進んだ RC 道路橋の場合,床版下面 の塩分浸透状況は橋軸方向鉄筋の背面にまで鋼 材腐食発生限界イオン濃度を超える高濃度の塩 分が浸透している場合が多い。塩分浸透状況で 考えると,程度の違いがあるにせよ,鉄筋の腐

*1 (株) クエストエンジニア 土木調査設計部 (正会員) *2 金沢工業大学 環境・建築学部環境土木工学科助教授 博士(工学) (正会員)

*3 金沢工業大学大学院 工学研究科環境土木工学専攻 (非会員)

*4 (株) クエストエンジニア 土木調査設計部 (非会員)

食は進むことが予測される。しかしながら,実際の現地調査では,写真-1のようにコンクリート表面側に配置された鉄筋の下面に集中して腐食が進行する事象が数多く見られた。

3. 実験概要

3.1 供試体概要

実橋梁における損傷実態を踏まえ,現場を模擬した4ケースの実験を行った。実験ケースご との供試体概要を図-2,表-1に示す。

供試体は水セメント比が 50%のモルタルとし, 二軸方向分割鉄筋¹⁾を2本埋設した。二軸方向 分割鉄筋の概要と要素番号を図-3に示す。鉄筋 は異形棒鋼 (SD295A、D13mm)を用い、上側鉄 筋と下側鉄筋の間で形成される腐食セルを把握 するため、上下 (6.5mm)および左右(40mm)に分 割し,1本の分割鉄筋につき鉄筋要素を6つとし た。なお、各鉄筋要素にはリード線をハンダ付 けし、隣接する鉄筋要素間はエポキシ樹脂によ り絶縁した後に、鉄筋要素からのリード線を全 て接続することで電気的に1本の鋼材とした。 また、埋設した2本の鉄筋は、桁端部における 配筋を模擬し2本が直交するように配置した。 鉄筋交差箇所はビニールテープにより絶縁し、 上記分割鉄筋と同様にリード線を接続すること で電気的に接するようにした。

供試体の塩分量は,実橋梁の塩分浸透状況を 参考に,上部鉄筋下側を境界として深さごとに 異なるように設定した。なお,実橋梁では,時 間経過とともに塩分浸透が進むため,各供試体

写真--1 鉄筋腐食状況(例)

表-1 供試体の想定劣化区分と塩分量の概要

Ne.	実験ケー	ス	G□*含有1	****		
	換傷形態	劣化 区分	上都鉄筋下側 より注い	上部鉄筋下側 より深い	(mm)	換傷機變
1	塩分浸透し始め	進展期1	10	なし	15	なし
2	塩分浸透後	進展期2	10	7	15	なし
3	ひび割れ発生	加達期	10	なし	15	ひび割れ
4	かぶりはく離後	劣化期	10	7	0	浮き・ はくり

の塩分量も細かく設定する必要がある。しかし, 本実験では,損傷模擬(ひび割れ等)の違いに よる影響に着目するため,実験条件を簡素化し た。すなわち,表面部は高濃度(10kg/m³)で一 定とし,一方,深部はなしもしくは低濃度 (7kg/m³)とした。ただし,実験 No.3の深部で の塩分量は、実験 No.1の後に引き起こされる可 能性を考慮し、塩分量は「なし」とした。これ による実験結果への影響は小さいと考えている が、今後の検証を予定している。また、塩分濃 度分布を明確にするため、塩化ナトリウムを練 混ぜ水に混入した。初期養生は水中(20±2℃) において 28 日間行った。その後、外部からの塩 分浸透を防ぐため、下面以外の 5 面をエポキシ 樹脂にて被覆した。

3.2 暴露方法

暴露方法は, JCI-SC3 等を参考に, 浸漬(20℃, 3%塩化ナトリウム水溶液)3日間と乾燥(20℃, 60%RH)4日間を1サイクルとし, 乾湿を繰返す 塩害促進暴露を行った。

3.3 測定概要2)

鉄筋要素間電流密度を無抵抗電流計により測定し,鉄筋要素内腐食電流密度を周波数応答解 析装置(FRA)により測定した。また,鉄筋要素間 電流密度と鉄筋要素内腐食電流密度の測定方法 の概要を図-4に示す。なお,本実験で用いた鉄 筋要素間電流密度の測定方法は,たとえば,上 部鉄筋の鉄筋要素 5 と他の全ての鉄筋要素との 間に11 個の無抵抗電流計を設置し,一度に各要 素の電流を測定するものである¹⁾。測定した電 流の合計を各々の鉄筋要素の表面積で除して, 鉄筋要素間電流密度とした。

3.4 評価方法

鉄筋腐食の進行程度を表す方法は、測定され た鉄筋要素間電流密度と鉄筋要素内電流密度の 和である「総腐食電流密度(µA/cm²)」を用い る²⁾。総腐食電流密度の算出例を図-5に示す。

4. 実験結果

4.1 実験結果

各ケースの暴露期間 3 ヶ月における総腐食電 流密度の測定結果を図-6 に示す。

実験ケース No.1 の場合,下部鉄筋の下側であ る鉄筋要素 10~11 で若干高い値となるが,全体 として総腐食電流密度は低い。従って,腐食形 成はほとんど進行いない状態と判断できる。

図-5 総腐食電流密度の算出例

実験ケース No.2 の場合,総腐食電流密度が No.1 に比べ全体として高い値となる。特に,下 部鉄筋の下側である鉄筋要素 10~12 で高い値と なり,鉄筋要素 11 では約4倍の増加が認められ る。従って,腐食形成は下部鉄筋の下側を中心 に進行している状態であると判断できる。

実験ケース No.3 の場合,下部鉄筋の上側・下 側とも腐食電流密度が著しく高い値となる。上 部鉄筋は,No.1・2 と同様,総腐食電流密度の増 加は認められない。従って,腐食形成は下部鉄 筋の上・下側で著しく進行している状態である と判断できる。

実験ケース No.4 の場合,下部鉄筋の下側で腐 食電流密度が著しく高い値となる。逆に,No.3 で高い値を示した下部鉄筋の上側は低下してい る。上部鉄筋は,No.1~3と同様に総腐食電流密 度の増加は認められない。従って,腐食形成は 下部鉄筋の下側に集中して進行している状態で あると判断できる。

実験で用いた供試体を解体し、鉄筋の腐食状 況を確認した。最も腐食が進んでいた No.4 の状 況を写真-2 に示す。実際の鉄筋腐食状況も下部 鉄筋の下側の腐食が著しく、総腐食電流密度の 測定結果と同じ傾向を示した。

4.2 経過時間,鉄筋腐食量の算出

劣化進展メカニズムの検討を行うため,実験 より求めた実験ケースごとの総腐食電流密度よ り,実験ケースごとの時期及び経過時間と,経 過時間に伴う鉄筋部位ごとの鉄筋腐食量の算出 を行った。時期の概要及び各実験ケースが想定 している時期を表-2,算出結果を表-3,鉄筋 部位の名称を図-7に示す。

なお,各時期における腐食量は,実験より算 出した各鉄筋要素の腐食速度に年数を乗じて求 めた。

(1) 時期 A, B

時期 A から時期 B までの経過時間は, 図-7 の各かぶり深さ x₁, x₂の位置で, 腐食発生限界

写真-2 鉄筋腐食状況 (No. 4)

表-2	時期の概要及	び実験ケー	スの想定時期
-----	--------	-------	--------

時期	内容	実験ケースが想定 している時期	劣化区分	
٨	下都鉄筋の下側で腐食が開始する時期 (本実験の起点)	実験ケースNo.1 ⇒(加閉A~B)	進展期1	
B	上都鉄筋下側で腐食が開始する時期	マ(明hilling) - D7 実験ケースNo.2	38 10 10 2	
С	ひび割れが発生する腐食量に達する時期	⇒(期間B~C) 実験ケースNo.3	Second and a	
D	浮き・はく離が発生する腐食量に達する期間	⇒(期間C~D)	/#120.997	
E	下都鉄筋上側がひび割れ発生病食量に 達する時期(本実験の表点)	実験ケースNo.4 ⇒(期間D~E)	劣化期	

	」結果	算出	は豊の	筋腐食	鉄	と	圖時間	経	-3	表
--	-----	----	-----	-----	---	---	-----	---	----	---

実験		劣化	鉄筋部位	廣食速度	経過	廣食量
ケース	時期	区分	名称	[mg/cm ² /年]	[年]	[mg/cm ²]
			0	0.390	2.2	0.857
	4. 0	進農期	2	0.190	2.2	0.418
NO.1	А~В	1	3	0.052	2.2	0.115
			4	2.259	2.2	4.969
			Ū.	0.456	14.9	6.655
No 2	8~0	進展期	2	4.713	14.9	60.301
10.2	0.00	2	3	0.702	14.9	9.028
			(4)	7.109	14.9	95.290
			0	0.835	16.2	7.728
No 2			2	6.428	16.2	68.560
10.5	10~D		3	37.050	16.2	56.634
			٩	50.845	16.2	160.620
_			1	Q.280	21.2	9.143
No.4	D~E 劣化期		2	4.473	21.2	91.187
110.4			3	7.641	21.2	95.290
				43.188	21.2	379.102
		上部鉄路	<u> </u>			
		上部鉄筋	F# (2.	0	I	
				and the other state of the second state of the		
		下部鉄筋	╘╫│──┿─	12	x3	1
		下部禁助		x1		
		図—	7 各數	筋部位の	名称	

濃度(1.2kg/m³)に達するまでの時間差を,式(1)を 用いて求めた。

$$C(x,t) = C_0 \left(1 - erf \frac{x}{2\sqrt{Dc \cdot t}} \right) + C(x,0) \quad (1)$$

ここで、C(x, 0) =0(kg/m³) とし、実構造 物の塩分浸透性状から、C₀=4.5(kg/m³)、Dc= 0.98(cm²/年)とした³⁾。なお、かぶり深さx(mm) は、実際の供試体の配筋状況からそれぞれ x_1 = 15、 x_2 =28 とした。

式(1)から,各かぶり深さにおいて腐食発生限 界濃度に達する年数は,かぶり深さx₁で0.9年, かぶり深さx₂で3.1年となった。なお,今回の 実験は劣化区分が進展期以降を想定しているた め,時期 A を原点(0年)とすると,時期 B は 2.2年となる。

次に,総腐食電流密度から腐食速度を求めた。 腐食速度の算出方法は表-4の式(2)を用いた。

(2) 時期 C

時期 C の経過時間を求める方法は、ひび割れ が発生する腐食量を算出し、その結果を腐食速 度で除して求めた。なお、ひび割れや浮き・は く離の発生する腐食量は国内外で研究されてい るが、その研究成果によって大きく異なる。今 回は荒木らの算定式⁵⁾を用いる。

表-4の式(3)~(5)の計算結果から,時期 Cでの鉄筋4の腐食量 W_{loss}は 95.3(mg/cm²)となる。

(3) 時期 D

時期 D を求めるため、浮き・はく離が発生す る腐食量を求める。浮き・はく離の発生する腐 食量は、表-4の式(3)~(5)で用いている鉄筋 半径変化量 dr_{cr} に替わり、浮き・はく離が発生す る時の鉄筋半径変化量 dr_{sp} を用いて算出した。な お、鉄筋半径変化量 dr_{sp} は、 dr_{cr} にはく離倍率⁵⁾ $\gamma_{sp}=1.66$ を乗じて算出した値 $dr_{sp}=0.30$ を用い た。

計算結果より,時期 D での鉄筋 4 の腐食量 W_{loss}は 160.6(mg/cm³)となる。

(4) 時期 E

時期 E は, 鉄筋 4 以外の鉄筋腐食の影響を受け始める年数であり, 本実験では鉄筋 3 がひび割れ発生腐食量に達する年数とした。このときの腐食量は時期 C と同様 W_{loss}=95.3(mg/cm²)である。

表-4 腐食速度及び鉄筋腐食量の計算方法

1.総腐食電流密度から腐食速度の変換	
$\left \frac{\Delta r}{dt}(cm/year) = rac{ 枯腐食電流密度I}{Faraday 定数} \times rac{1molあたりの鉄の質量}{ $	(2)
2.ひび割れ発生腐食量の計算 (1)ひび割れ到違点の鉄筋半径変化量 ⁵⁾	
$dr_{\sigma} = \alpha e^{-\beta L}$	(3)
弾性体長さL=120(mm), かぶりc=15mm α=0.43450, β=0.00745	
(2)腐食での鉄筋断面半径減少量 ⁵⁾	
$\Delta r = r_0 - \sqrt{\frac{\gamma r_o^2 - (r_0 + dr_{cr})^2}{\gamma - 1}}$	(4)
察食膨張率γ=2.5 初期鉄筋公称半径r ₆ =6.5(mm)	
(3)ひび割れ発生時の腐食量W _{loss}	
$W_{low} = \rho \cdot \Delta r$	(5)
鉄の単位容積重量 p =7.86(mg/mm ³)	

5. 塩害進展メカニズムの検討

4.2 で得られた結果より,各劣化区分において 鉄筋腐食がどの部位や速度で進行して行くかを 検討し,時間経過に伴う鉄筋腐食量の進行過程 を求め,塩害進展の定量化を行った。

検討結果を図-8に示す。

進展期(1)は、鉄筋腐食開始時期が下部鉄筋 下側から上側に至るまでの期間(2.2年間)であ る。腐食速度は下部鉄筋下側(番号4)が大きく なるが、その値は2.3(mg/cm²/年)と小さく、加速 期の腐食速度の1/20程度である。従って、この 期間は、高濃度の塩分浸透があっても鉄筋腐食 の進行は小さいものと推察される。

進展期(2)は、ひび割れが発生するまでの期間(12.7年間)である。腐食速度は最も大きな下部鉄筋下側(番号4)で7.1(mg/cm²/年)とやや高く、上部鉄筋下側(番号2)でも腐食速度の上昇が認められる。なお、上部・下部鉄筋の上側は、ともに腐食速度の上昇は少ない。従って、この期間は、コンクリート表面の損傷は見られないが、内部では下部鉄筋下側と上部鉄筋下側を中心に鉄筋腐食が着実に進行しているものと 推察される。

加速期は、浮き・はく離が発生するまでの期 間で、短期間に浮き・はく離に至る結果となっ た。腐食速度は下部鉄筋の上下側とも非常に大 きく、最大で 50.8(mg/cm²/年)と実験内で最も大 きな数値を示した。なお、上部鉄筋の上下側は、 ともに腐食速度の上昇はほとんどない。従って、 この時期はひび割れが発生することにより下部 鉄筋を中心に腐食因子が直接到達することにな り、腐食が著しく進行するものと推察される。

劣化期は、腐食速度は下部鉄筋の下側が非常 に高く、43.2(mg/cm²/年)となる。逆に、加速期 で高い数値を示した下部鉄筋上側の腐食速度は 低下する。なお、上部鉄筋の上下側は、ともに 腐食速度の上昇はほとんどない。従って、この 時期は浮き・はく離により腐食因子の到達が一 層進み、著しく腐食が進行すると推察する。な お、下部鉄筋上側の腐食速度が減少した原因と して、下部鉄筋下側で集中的に腐食形成が進行 することで、他の部位は相対的にカソードとな り、腐食形成が進行しないものと推察する。

6. まとめ

今回の実験・検討結果より,以下のことが明 らかになった。

(1)劣化区分や鉄筋部位ごとに腐食速度は大きく異なっており、その現象をモデル化し、定量的に把握することが出来た。

- (2) 進展期では、下側鉄筋の腐食の進行が大きいが、その値は比較的小さい。
- (3) 加速期では、ひび割れやコンクリート浮 き・はく離発生以降急速に腐食が進行する。
- (4) 劣化期では、下部鉄筋下側で集中的に鉄筋 腐食が進行する。また、この現象は、実際 の塩害劣化の進んだ RC 道路橋で発生して いる損傷形態をほぼ再現している。

参考文献

- 山本恵理子ほか:二軸方向分割鉄筋を用いた マクロセル腐食電流密度の測定方法の構築, 土木学会中部支部研究発表会講演概要集, pp.21-22,2006
- 2) 宮里心一ほか:分割鉄筋を用いたマクロセル 電流測定方法の実験的・理論的検討、コンク リート工学年次論文集, Vol.23, No.2, pp.547-552, 2001
- 青山實伸ほか: 凍結防止剤によるコンクリート構造物への塩分浸透性状, コンクリートエ 学年次論文集, Vol.26, No.1, pp.807-812, 2004
- (4) 宮里心一:鉄筋コンクリートの欠陥部に生じる塩害および中性化によるマクロセル腐食に関する研究,学位論文,2001.3
- 5) 荒木弘祐ほか: 鉄筋の腐食膨張によるかぶり コンクリートの剥離現象とその予測, 土木学 会論文集 No.802, V-69, pp.209-222, 2005.11