論文 1スパン2層ピロティフレームを合成極厚無筋壁で耐震補強した加力実験

前田 興輝"'・山川 哲雄"'・Md. Nafiur RAHMAN"'・Pasha JAVADI"

要旨:山川らは鋼材やPC鋼棒を型枠兼横補強材として使用し,コンクリートを増し打ち することでアンカー筋無しで既存柱と一体化が可能な極厚壁を,ピロティフレーム内に 増設する耐震補強法を提案している。本研究では,1スパン2層ピロティ骨組の1層部分 に袖壁あるいは無開口壁タイプの合成極厚無筋壁を増設し,一定鉛直荷重作用下におけ る正負繰り返し水平加力実験でその耐震性能を確認し,補強効果を明らかにした。 キーワード:耐震補強,ピロティフレーム,1スパン2層,合成極厚無筋壁,あと施工アンカー

1. 序

山川らは1スパン1層のピロティフレーム内 にコンクリートを柱幅まで増し打ちし、コンク リート硬化後に型枠として使用していた鋼板を, 緊結材として利用していたPC鋼棒とナットによ り緊張力を導入して圧着する合成極厚無筋壁補 強法を提案したい。この耐震補強法は側柱もチャ ンネルタイプに加工した鋼板で包み込み、かつ グラウトを施し, その鋼板の縁を壁部分の鋼板 と重ね合わせ、緊張鋼棒とナットで結合し、壁 全体を閉鎖的に横拘束する無開口壁、または開 口を有する袖壁補強タイプで構成される。この ことにより、フレーム全体のせん断破壊が防止 され、耐力と靭性に富んだ耐震性能を確保する ことができたい。このように構築された合成極厚 無筋壁を1スパン2層ピロティフレームに適用し た場合の耐震性能について、一定鉛直荷重の作 用下で正負繰り返し水平加力実験を行い、検証 することが本研究の目的である。

2. 実験概要

本実験で用いた試験体の形状,配筋及び寸法 をFig.1に示す。柱断面は1,2階ともに175× 175mmの正方形断面で,内法高さは875mm(M/ (VD)=2.5)である。1層部分の下スタブ表面から 2階梁中心までの高さは1,000mmで,側柱中心 間距離は1,500mmとなっている。また2層部分

のRC耐震壁及びコンクリートブロック壁(以下 CB 壁)の内法長さは1,325mm,内法高さは 875mmである。壁筋には3.7¢を使用し,RC耐 震壁は縦横筋とも60mm間隔(p_s=0.3%)でシン グル配筋し,CB壁においては各ブロックの空洞 部に縦筋を125mm間隔(p_s=0.18%),横筋は2段 おきに120mm間隔(p_s=0.19%)で配筋した。ま た,壁筋は付帯ラーメンの柱及び梁内に定着さ せている。なお,使用した鋼材の力学的特性を Table 1 に示す。

Table 2に補強試験体の一覧を示す。試験体総 数は4体で,有開口袖壁補強(以下袖壁補強)を

- *1 琉球大学大学院 理工学研究科環境建設工学専攻(正会員)
- *2 琉球大学 工学部環境建設工学科教授 工博 (正会員)

*3 琉球大学大学院 理工学研究科生産エネルギー工学専攻 工修 (正会員)

Steel materials		a (mm ²)	σ _y (MPa)	Е _у (%)	E _s (GPa)
Rebar (or Dowel)	D10	71	349	0.17	202
	D13	127	342	0.17	201
	D19	287	373	0.19	197
Hoop or stirrup	3.7ф	11	650	0.31	208
	D6	32	432	0.24	175
PC bar	13ф	133	1220	0.61	200
Steel plate	t=2.3mm	-	348	0.16	212
Deck plate	t=1.2mm	-	268	0.13	203
Note: amore	an anatio	- oroo 6	- riold a	trongth	c -viald

Table 1 Properties of steel materials

<u>Note</u>: a=cross section area, σ_y =yield strength, ε_y =yield strain of steel materials, E=Young's modulus

施した試験体が2体,無開口壁補強を施した試験 体が2体となっている。

袖壁補強試験体において、1体は2層壁部分が RC耐震壁(R06P-WW)であり、もう1体はCB壁 (R06P-WB)となっている。いずれも側柱をチャ ンネルタイプに加工した鋼板(t=2.3mm)で包み 込み、デッキプレート(t=1.2mm)を型枠として コンクリートを増し打ちし、硬化後、増設した 袖壁部分を中ボルト(12¢)及びナットを介して緊 張力を導入し、デッキプレートにより袖壁補強 部分を圧着した。なお、袖壁の開口部分には、カ バーコンクリートの剥離・剥落防止のため、剥 落防止筋(D6)を100mm間隔で配筋している。

無開口補強試験体においても同様な補強方法 により、ピロティフレーム内に極厚無筋壁を設 け,増設壁部分をデッキプレートで挟み込み,中 ボルト(12¢)及びナットを介して緊張力を導入し た試験体(R06P-PD)と,増設壁部分を鋼板 (t=2.3mm)により挟み込み,PC 鋼棒(13¢)によ り緊張力を導入した試験体(R06P-PS)となって いる。また無開口壁補強を施した2体の試験体に おいては,滑りを防ぐために合成極厚無筋壁の 脚部にのみ,あと施工ケミカルアンカー(D19)を 試験体 R06P-PD は6本,R06P-PS は9本打ち込 んだ。なお,あと施工アンカーは全体の曲げ引っ 張り筋として抵抗せず,せん断にのみ抵抗する ように付着を切って施工している。

Fig. 2に本実験で用いた加力装置と加力プログ ラムを示す。載荷方法は側柱のみで一定軸力比 0.2相当の下,正負繰り返し水平加力実験を行っ た。加力サイクルは部材角 0.125%, 0.25% を各 1回ずつ行い,次に 0.5%, 0.75%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0% を各 2 回ずつ, 4.0%, 5.0%, を各1回ずつ繰り返し終了した。なお,各サイク ルとも 1 層部分の水平変位により制御した。

水平荷重は1スパン2層ピロティフレームにA_i 分布を適用して,水平ジャッキの位置を決定し た。本実験の場合,水平荷重の割合は2階梁位置 が1.0に対して,3階梁位置が1.2となっている。 この水平力の割合は水平力載荷梁(3階梁と2階

3.70-@60 single (horizontal & vertical) (p =0.30%). (unit: mm)

Fig. 2 Test setup and loading program

梁に鉛直方向に架け渡すH形鋼)が上部でピン, 下部でローラーの静定支持になっており(Fig.2 参照),水平変位の如何に関らず不変である。水 平変位の制御は2階梁中心軸上の左右水平変位, 即ち左右柱梁接合部中心の平均で行った。

3. 実験結果

Fig. 3に実験終了後の最終破壊状況,及びせん 断力Vと2階柱梁接合部中心の水平変位の平均値 δとの関係である V-δ 履歴曲線を示す。なお,1 層部分のひび割れ図は加力実験終了後デッキプ レート,鋼板を取り外して描いた図である。水 平変位 δ (cm) と1 階の層間変形角 R(%) は, 階高が下スタブの上表面から2 階梁中心まで ちょうど1mであるから,同じ値になる。しかし, 無開口壁補強試験体にはその水平変位に滑りが 若干含まれているので, δ とRは完全に対応して いないことに留意する必要がある。

Fig. 3に示す V-δ曲線より、袖壁補強試験体 R06P-WW と R06P-WB では, 最大水平耐力が 272.8kN と 280.9kN とほぼ近い耐力を示し、V-8 曲線もほぼ同じような靭性に富んだ履歴を示し た。どちらの補強試験体も型枠兼横補強材であ るデッキプレートを取り外した後, Fig. 3に示す ように袖壁補強部分にせん断ひび割れが見られ たが、急激な耐力低下は見られず、層間変形角 R=5.0% (水平変位 δ=5cm) まで最大水平耐力の 80%を維持した。これはデッキプレートが横拘 束材の働きをするとともに、柱がチャンネル鋼 板(t=2.3mm)とグラウト材で閉鎖形に横補強さ れているため,柱のせん断破壊が防止され,1層 フレームの曲げ降伏に至ったからである。著者 らが行った同じスパン, 階高, 断面, 配筋の1ス パン1層のフレームの袖壁補強実験では、補強袖 壁部分にせん断ひび割れは一切生じていなかっ た²⁾。これは緊張PC鋼棒(13o)で鋼板(t=2.3mm) を圧着し、鋼板が横拘束材のみならず、せん断 補強材の役割を果たしていたからである。デッ キプレートは板厚がt=1.2mmと薄い上に,波状

<u>Note:</u> Loading direction from left to right is push (+) and vice versa. Plot (∇) is maximum strength. Dotted line is $0.8V_{max}$ or $0.8V_{min}$. Fig. 3 Observed cracking patterns at final drift angle and experimental V- δ relationships

になっているため面外曲げ剛性は期待できても, せん断引張りには抵抗しにくいからだと推定さ れる。したがって,デッキプレートは,この場合 適切な補強材であるとは言い難い。

2 層目が RC 耐震壁である R06P-WW は 2 階梁 と2層目の耐震壁が一体化し、2層目全体が剛体 として挙動し、1層両柱の柱脚と柱頭に曲げの 塑性ヒンジが生じ, 層崩壊に至った。一方, 2層 目が CB 壁である試験体 R06P-WB は、2 層目を コンクリートブロックの先積み工法として2層 目のフレームと同時に、空洞ブロックの継目に コンクリートを打設した。しかしCB壁の強度と 剛性がRC耐震壁に比較して弱いので,2階梁(袖 壁先端)に曲げひび割れが生じ(Fig.3参照),柱 と梁に曲げの塑性ヒンジが生じた(Fig.6参照)。 著者らの別論
いによれば、同じ形状、断面、配筋 の1スパン1層CB壁の水平耐力が 247.0kN(Fig. 4参照)であることを考慮すると、R06P-WB試験 体の水平耐力 280.9kN(2 層目は 153.2kN のせん 断力)で、CB壁がせん断破壊することはない。

無開口壁補強試験体R06P-PDはデッキプ レート(t=1.2mm)と中ボルト(12¢)を用い,試験 体R06P-PSは鋼板(t=2.3mm)とPC鋼棒(13¢)を 用いている。このことが両試験体間で異なるだ けである。しかし,袖壁補強試験体からも明ら かのようにデッキプレートがせん断補強材とし ての役割を果たしていないため,R06P-PDは1階 側柱脚部の曲げ降伏が先行した後,1階極厚無筋 壁補強部の側柱頭のパンチングシアで水平耐力 が支配されている。すなわち,1階補強壁と2階 梁の間に架け渡されたデッキプレートが,2階か らのせん断力を1階補強壁に十分伝達できずに, 1階側柱に負担がかかりすぎて柱頭部でパンチン グシアを引き起こした。また,2階RC耐震壁に

Fig. 4 Observed cracking pattern and V-8 relationship of specimen R06W-B0

もせん断ひび割れが生じた。

一方,薄鋼板(t=2.3mm)とPC 鋼棒(13φ)を用 いた試験体R06P-PS は鋼板のせん断補強効果 が表れ,1階側柱に曲げひび割れが進展して壁脚 部とスタブ表面が次第に分離した。その結果,理 想とする片持ち梁タイプの弾塑性曲げ挙動が卓 越し,安定したV-δ曲線が得られた。しかし, 側柱脚部の曲げひび割れが大きく進展し,その 結果,側柱脚部の主筋に曲げひび割れに伴うひ ずみ集中が起こり,1階部分の層間変形角 R=2.0%の2回目のサイクル当たりから主筋が 破断し始め,R=2.5%時には柱脚部の主筋がほと んど破断し,水平耐力が最大水平耐力の半分に 低下したため加力実験を終了した。

無開口壁補強試験体はお互いに崩壊機構は異 なるが、いずれの試験体もR=2.0%の1サイクル 目までは最大水平耐力の80%以上を維持しなが ら、安定的な弾塑性挙動を示した。しかし、破壊 形式からすれば試験体R06P-PSの片持ち梁タイ プの曲げ破壊が望ましい。しかし、そのために ひずみの集中により、1階側柱脚部の主筋が引張 り破壊し、十分な靭性が確保できない恐れもあ る。この場合の層間変形角2.0%を十分と見るか どうかが問題となる。この意味ではピロティ階 に袖壁補強を施したほうが、水平耐力の増分は無 開口壁補強ほど大きくないが、十分な靭性が確保 できる(Fig.5参照)。

500 R06P-PS 400 R06P-WB V(kN) 300 200 R06P-WW 100 R06P-PD δ(cm) 0 3 2 1 4 5 R06P-WW 100 R06P-PS 75 W(kN • m) R06P-PD 50 R06P-WB 25 δ(cm) 4 5

Fig.6に実験で観察された崩壊機構を示す。

袖壁補強は1階ピロティフレームに曲げの塑性ヒ ンジが発生している。しかし、フレームに生じる 塑性ヒンジの位置が2階壁の種類によって異な る。さらに、1階柱頭に生じた塑性ヒンジの取り 扱いにも後述するような配慮が必要である (Fig.8参照)。無開口壁補強は1階ピロティフ レーム柱頭のパンチングシア破壊と、片持ち梁 タイプの脚部曲げ破壊に分類される。

4. 崩壊機構の検証

本補強法を1スパン2層ピロティ骨組に適用し た場合の水平耐力の評価法を確立するために, 実験で観察された崩壊機構の検証を行う。各部 材の曲げ強度は文献4)に基づいて算定し, Fig. 6に示す破壊機構をもとに水平耐力を算出した。

袖壁補強試験体において、ピロティ階に作用 する応力を Fig. 7に示す。水平耐力(P)は2 層部 分を剛体とし、式(1)により算出した。

 $P = {}_{\iota}Q + {}_{\kappa}Q = (\Sigma_{\iota}M + \Sigma_{\kappa}M)/h_{0}$ (1) ここで, ${}_{L}Q$, ${}_{R}Q$ はそれぞれの側柱に作用するせ ん断力, $\Sigma_{L}M$, $\Sigma_{R}M$ はそれぞれの側柱の柱頭, 柱 脚の曲げ強度の和, h_{0} は側柱の内法高さである。

2層部分がRC耐震壁であるR06P-WWの水平 耐力を計算する場合,崩壊機構に基づいて文献 4)の袖壁付き柱の曲げ強度式を適用すると実験 結果を過大評価する。この理由としては,文献 4)では袖壁付き柱の曲げ強度式は,袖壁が圧縮 側になる場合と引張り側になる場合の2種類が 提案されており,理論上,Fig.6a)のA部分の 柱頭は袖壁側が圧縮となる(Fig.8a)参照)が, 本試験体の場合,梁下までしか補強しておらず, 増し打ちコンクリートの収縮により袖壁と梁下 端に隙間が生じ,袖壁部分に生じる圧縮束が有

効に働いていないため、この仮定が成立しない。 したがって、Fig. 8 b)に示すような柱のみを考慮 したモデルを考える。このように計算した結果、 水平耐力は 275kN となり、フレームのヒンジ崩 壊機構による水平耐力を説明することができる (Fig. 9参照)。袖壁部分に生じる圧縮束を有効に 働かせるためには、袖壁上端と梁下端の隙間を 防ぐ必要がある。

2階部分がCB壁であるR06-WBにおいては、Fig. 6に示すように袖壁上端縁の梁部分に形成された 塑性ヒンジに伴う曲げモーメントを、2階柱脚と 1階柱頭に分配する必要がある。その際に2階の 空洞ブロック壁を無視し、純ラーメンと仮定する と1階が極厚袖壁付き柱であるので、2階の柱に 対して1階の柱は約10倍近くの剛性を有する。そ のために、本論文では近似的に2階柱脚部の曲げ モーメントを無視して、1階部分の水平耐力を評 価した。その結果、計算値としての水平耐力は 271.0kN となり、実験値の271.3kN から280.9kN とほぼ一致していることがわかる。

無開口補強試験体において,最大耐力時に主筋は降伏し,ひずみ硬化域に達していたため,曲 げ強度算出の際,主筋の強度には引張強度(D10, σ_u=497MPa)を用いた。また,補強壁脚部のあと 施工アンカーは付着を切っているため,曲げ強 度に影響を及ぼさないものとし,曲げ強度算定 の際にアンカー筋の効果は考慮していない。

R06P-PDは,曲げ降伏が先行した後,1階側柱 柱頭部でパンチングシアを引き起こしたため, 脚部水平断面における曲げ強度か,及び柱頭によ るパンチングシア強度^{の,}の計算結果をFig.9に 示す。なお、パンチングシア強度は、層間変形角 が小さい場合(Fig. 9*1))と大きい場合(Fig. 9*2))とで強度が異なる。層間変形角が進むに 従い. コンクリートの損傷も進むため. 層間変 形角が大きい場合のパンチングシア強度を算出 する際は、摩擦係数を低減している。このよう にして算出した結果, 層間変形角が小さい場合 及び大きい場合のパンチングシア強度はそれぞ れ555kN, 377kN, 曲げ降伏耐力は463kNとなっ た。この計算結果より,層間変形角が小さい時 は、補強壁脚部の曲げ降伏により水平耐力が支 配されるが,層間変形角が大きくなるに従って, 柱頭のパンチングシェアにより水平耐力は支配 される。したがって、崩壊機構と水平耐力との 整合性は成立している。

鋼板により無開口壁補強を施した R06P-PS に おいては、脚部水平断面における曲げ強度と崩 壊機構の整合性を確認するために1層部分上端 のパンチングシア強度^{の, n)}をもとに水平耐力を算 出した。なおパンチングシア強度は、鋼板及び PC鋼棒によるパンチングシア強度のうち,最小 値を採用している。その結果,パンチングシア 強度(PC 鋼棒)は930kN(鋼板は1225kN),曲げ 降伏耐力は463kN となり、本試験体は無開口壁 脚部の曲げ降伏により水平耐力は支配され,崩 壊機構と水平耐力との整合性は成立している。

5. 結論

1) 袖壁補強タイプでは2階がRC耐震壁か, CB壁 かで1階ピロティフレームの崩壊機構が異なっ ている。この理由は,水平剛性や水平耐力が大 きい2階RC耐震壁は,ほぼ剛体として挙動し, 一方, RC耐震壁に劣るCB壁は早期にせん断ひ び割れが生じ,フレームとして挙動が卓越して くるからである。

2) 袖壁補強試験体 R06P-WW において, 層間変 形角が大きくなるに従い, 袖壁上端と梁下端部 分に隙間が生じ, 一体化せず, 袖壁補強部分が 有効に働かなかった。

3) 無開口壁補強タイプでは型枠兼横補強材が デッキプレートか鋼板かにより,崩壊機構が異 なった。デッキプレートはせん断補強効果が期 待できず,補強材としては鋼板及びPC鋼棒の組 み合せが望ましいことが分かった。

謝辞

本研究は、国土交通省の平成18年度建設技術研究開発助 成制度「緊張PC鋼棒と合成極厚無筋壁を用いたビロティ住 宅の耐震改修」、及び日本学術振興会の平成18年度科学研 究費補助金(基盤研究(B)17360272)(いずれも研究代表者: 山川哲雄)によった。

参考文献

1) Tetsuo YAMAKAWA, Md. Nafiur RAHMAN, Kozo NAKADA and Yoichi MORISHITA: Experimental and Analytical investigation of seismic retrofit technique for a bare frame utilizing thick hybrid walls, 日本建築学会構造系論文集, 第 610 号, pp. 131-138, 2006.

2) Md. Nafiur RAHMAN, Tetsuo YAMAKAWA, Yoichi MORISHITA: Investigation of pilotis frames retrofitted by opening type thick hybrid wing-walls:コンクリート工学 年次論文集, vol. 27, No. 2, pp. 1117-1122, 2005.

3) 森下陽一,山川哲雄,高良慎也,山城浩二:日本建築学会研究報告書九州支部,第46号・1(構造系), pp. 617-620, 2007.

4) Md. Nafiur RAHMAN, Tetsuo YAMAKAWA, Yoichi MORISHITA, Kozo NAKADA: Investigation of Bare Frames Retrofitted by Thick Hybrid Walls under Cyclic Lateral Forces and Constant Vertical Load, 日本建築学会大会学術講 演梗概集(関東), C-2, pp. 541-542, 2006.

5) 日本建築学会:建築耐震設計における保有耐力 と変形性能,日本建築学会,1990.

6) R. PARK and , T. PAULAY: Reinforced Concrete Structures. John Wiley & Sons, pp. 319-325, 1975.

7) T. PAULAY and M. J. N. PRIESTLY: Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley & Sons, pp. 129, 480, 1992.