論文 柱 RC・梁 S とする柱梁接合部の耐力設計式の確立

橋本 裕美子^{*1}·西村 泰志^{*2}

要旨:本研究は, S梁が RC 柱を貫通する最も基本的な接合部形式を対象として,理論的な 抵抗機構に基づいて, RCS 構造の柱梁接合部の合理的で簡便な支圧耐力設計式を提案した。 更に,既往の研究によって行われた,11 体の試験体の実験結果を用いて,提案された設計式 の妥当性を検討した。その結果,実験値と計算値の比は1.02 となり,設計式の妥当性が示 された。

キーワード: RCS 柱梁接合部,梁貫通形式,応力伝達機構,抵抗機構,支圧耐力設計式

1. 序

柱は鉄筋コンクリート(以下, RC と呼ぶ)造, 梁は鉄骨(以下, S と呼ぶ)造で構成された柱 RC 梁 S 混合構造の研究・開発が行われ, RCS 構造 の柱梁接合部(以下, RCS 接合部という)に関して 多種多様なディテールが提案された¹⁾。しかしな がら, 未だ, RCS 柱梁接合部の合理的な設計法 は確立されていない。

本研究は、直交梁がなく、S 梁が RC 柱を貫通 する最も基本的な接合部形式を対象として、著 者らが提案した抵抗機構に基づいて、合理的で 簡便な耐力設計式を提案し、既往の研究によっ て行われた実験結果を用いて、その妥当性を検 討するものである。なお、RCS 柱梁接合部は、 せん断破壊と支圧破壊の2つの破壊モードがあ るが、本研究は、支圧破壊に伴う支圧耐力を評 価する手法について提案する。

2. 抵抗機構に基づく耐力評価法の概要

図-1 に示す梁貫通形式柱梁接合部を対象と して、柱梁接合部の終局耐力を解析的に評価す る。なお、この接合部ディテールは、鉄筋コン クリート柱表面の鉄骨梁が取り付く部分の鉄骨 フランジ間に支圧板が設けられているのみであ り、鉄筋コンクリート部分は柱梁接合部にせん 断補強筋のみ配置されている最も単純なディテ

*1 大阪工業大学大学院 博士前期課程 (正会員)

*2 大阪工業大学 工学部建築学科 教授 工博 (正会員)

ールである。

この耐力評価法では, 柱梁接合部は図ー1 に示 すように鉄骨フランジ幅内の内部要素と鉄骨フ ランジ幅より外側の外部要素によって構成され るもの考え, 柱梁接合部の終局耐力は, 内部要 素と外部要素のそれぞれの終局耐力を累加する ことによって評価できるものとしている。

内部要素の支圧耐力は、図-2(a) に示すよ うなモデルによって評価している。柱梁接合部 に埋め込まれた鉄骨梁部材を剛と仮定し、てこ 機構による鉄骨フランジ上下面に作用するコン クリートの応力塊を矩形と考え、その大きさを λ・F_cとする。λは支圧効果係数で、F_cはコンクリ ート圧縮強度である。また、応力は鉄骨フラン ジ全幅にわたって作用しているものと仮定する。

-1321-

これらの応力は、反作用として、部材接合端に 作用することになるので、部材接合端の断面で の釣合いから、内部要素の支圧耐力が求められ る。なお、鉛直鉄筋が付加されている場合は、 支圧耐力を増大させることができると考えられ る。内部要素の支圧耐力 , は、図-5 (a) に示 すように求められる。

外部要素は、アーチ機構とトラス機構によっ て外力に抵抗するものと考える。外部要素の終 局せん断耐力は、それぞれ 2 つの抵抗機構から 求められる終局せん断耐力を累加することによ って評価できるものとしている。 アーチ機構よる終局耐力は、図-2(b) に示 すようなモデルによって評価している。このモ デルは、柱および柱梁接合部は、圧縮力にのみ 抵抗できるコンクリート圧縮束によって構成さ れると仮定する。一方、図-3に示すように、内 部要素から外部要素への応力伝達に伴うねじり モーメント T_{a2} および鉄骨フランジ上下面に配 置されるせん断補強筋の引張力 T_{a1}は、部材接合 端A,Bにおいてコンクリート圧縮束に作用する 圧縮力の釣り合いを成立させる拘束力 T として の働きを有すると仮定する。なお、T_{a2}はねじり モーメントを内部要素と外部要素との境界面で

図-3 アーチ機構の構成

図-4 トラス機構の構成

(e) 接合部の終局耐力

(a) 内部要素の支圧耐力

(d) 外部要素の終局耐力

図-5 終局耐力の評価

ー対の偶力に置換して考えていることを意味し ている。したがって、図-2に示された拘束力 T は、T_{a1} と T_{a2}の和によって表現されることを意 味している。なお、このモデルは、鉄骨フラン ジ上下面に配置されるせん断補強筋の引張力T_{a1} を拘束力とする幅b_{a1}の圧縮束とねじりモーメン ト T_{a2}を拘束力とする幅 b_{a2}の圧縮束の幅によっ て構成されていることを意味している。アーチ 機構による耐力。I_aは、図-5(b)に示すように 求められる。なお、梁幅と柱幅との比、柱幅な どを変数としたケーススタディを行った結果、 アーチ機構による最大耐力は、接合部圧縮束の せいk・D_cがほぼ0.6D_cの時であった。

トラス機構による終局耐力は、図-2(c) に 示すようなモデルによって評価する。このトラ ス機構は、図-4に示すように、支圧板内面から 外部要素に向かう圧縮力によって釣合い系が形 成されると考えている。

トラス機構は,主筋,せん断補強筋およびコ ンクリート圧縮束によって構成される。トラス 機構の有する最大耐力は,トラス機構に入力し 得る最大の抵抗力、すなわち、主筋の耐力によ って評価される。主筋の最大耐力は、図-5(c) に示すように、ふで評価される。しかしながら、 トラス機構はコンクリート圧縮束とせん断補強 筋によって構成されるので、トラス機構によっ て評価される最大耐力は、コンクリート圧縮束 の圧縮耐力、主筋の付着耐力およびせん断補強 筋による耐力のうちもっとも小さい耐力で決定 される。したがって、トラス機構による耐力は, 図-5(c)に示すように、主筋の付着耐力とせ ん断補強筋による耐力のうちの小さい方を Jpと すると、主筋の最大耐力 Jb のうち、 Jp で区切 られた efgh の内側の領域によって求められる。 なお、コンクリート圧縮束によって決定される 耐力については示していない。これはコンクリ ート圧縮束によって決定される耐力は、主筋の 付着耐力およびせん断補強筋による耐力に比べ てはるかに大きくなることが明らかなためであ る。J,で表されるトラス機構の耐力。M,につい て、せん断補強筋比などを変数としたケースス タディを行った結果、アーチ機構の耐力に比べ

て極めて小さく、支圧耐力の評価にあたって無 視することができる。

このようにして求められた外部パネルの耐力 は、この耐力を発揮するために必要な応力が内 部要素から外部要素に伝達された場合にのみ適 用できる。前述のように、内部要素から外部要 素への応力伝達は、内部要素と外部要素との間 のねじりモーメントおよび鉄骨フランジ上下面 に形成される水平圧縮束によってなされるので, 外部要素の終局耐力は、図-5(d)に示すよう に,外部要素の終局耐力 olab のうち,内部要素か ら外部要素への応力伝達に伴って決定される耐 力。Jrで区切られた EFGH の内側の領域によって 求められる。なお、この Jr は、現在理論的に評 価できる段階になく、既往の著者らの実験式¹⁾ を用いて評価できる。

柱梁接合部の終局支圧耐力は、図-5(e)に 示すように、内部要素の支圧耐力 んと外部要素 の終局耐力 J_{ab} のうち J_T で区切られた EFGH 部 分を一般化累加することによって I, として求め られる。本モデルによると、作用軸力が引張力 あるいは高圧縮力領域以外の時、支圧耐力は、 作用軸力に拘らず一定となることがわかる。

3. 設計式の提案

接合部の支圧耐力は(1)式による。

$$M_p = M_b + \min({}_oM_a, {}_oM_T)$$
(1)

$$M_b = \frac{b \cdot D_c^-}{4} \cdot \lambda \cdot F_c$$
 (2)

$$_{o}M_{a} = 0.6 \cdot D_{c} \cdot (B_{c} - b) \cdot F_{c} \cdot j_{b} \cdot \sin \alpha \cdot \cos \alpha$$

 $\cdot \cdot \cdot \cdot (3)$

$${}_{o}M_{T} = \left(0.26 + 3.22 \cdot P_{w} \cdot \sigma_{wy} \cdot \frac{B_{c}}{D_{c}} \cdot \frac{1}{F_{c}}\right) \cdot \left(\frac{s d^{2} \cdot (3 \cdot D_{c} - s d) \cdot F_{c}}{6}\right)$$
$$\cdot \cdot \cdot (4)$$

鉛直鉄筋が設置されている場合には、(1)式の M_b に ΔM_b を付加することができる。 ΔM_b は (5) 式による。

$$\Delta_{i}M_{b} = 2 \cdot_{re} a \cdot_{re} \sigma_{y} \cdot_{r} d \tag{5}$$

 $(N \cdot mm)$ (mm)

(mm)

	試験体														
불락		RC柱			RHATETE S 2		接合部	コンク	<u></u>		1912 せん断補強筋		<u><u>×</u>,</u>		
		h	natanu B _c × D _c	せん間	所補強防 ^{, c} ,	1			F _c			σ		N N	★ズ何里 0 _{ep}
		(1999)	(/mm)		(N/nm2)	(mm)		(mm)	(N/mm2)		(N/mm2)		(N/mn2)	(kN)	(kN)
1	ION	2250	250×250	8-D16	377.6	2250	H-200×100×5. 5×8	16	28.6	PL16	366.8	2-6 D	181.4	0	41.4
				4-D13	359. 9										
2	12N	2250	250×250	8-D16	377.6	2250	H-200×100×5. 5×8	16	28.6	PL16	366.8	2-6 Φ	181.4	513.9	50.5
				4-D13	359. 9										
3	PF53	2250	300×300	12-D16	344. 2	2250	H-250×100×9×16	16	28.5	PL16	256. 9	2D6	313.8	0	73. 2
										PL12	285.4				
4	A41	2400	500×500	12-D25	353.0	6000	H-500×150×9×25	9	35. 3	PL9	370. 7	2-D10	372. 7	1765. 2	168.0
		1								PL12	406.0				
5	A42	2400	500×500	12-D25	353.0	6000	H-500×150×9×25	9×2	35.3	PL9	370. 7	2-D10	372. 7	1765.2	187. 0
										PL12	406.0				
6	A43	2400	500×500	1 2- D25	353.0	6000	H-500×150×9×25	9×2	35.3	PL9	370. 7	2-013	337. 3	1765. 2	216.7
										PL12	406.0				
7	A44	2400	500×500	1 2-D 25	353.0	6000	H-500×150×9×25	9×2	35. 3	PL9	370. 7	2-D13	337. 3	1765. 2	222. 2
										PL12	406.0				
8	A45	2400	500×500	12-D25	353.0	6000	H-500×150×9×16	9×2	35.3	PL.9	370, 7	2-D13	337. 3	1765. 2	220, 8
										PL12	406.0				
9	A46	2800	500×500	4-D22	381.5	6000	H-375×150×9×16	9	26.5	PL9	305.0	2-D13	348.1	735 5	118 7
				8-D19	379.5					PL16	282.4				
10	A48	2800	500×500	12-D22	376.6	6000	H-375×150×9×16	9	33.3	PL9	322.6	2-D13	378.5	735.5	1 42 . 1
										PL16	296. 2				
11	WH0002N	2250	250×250	8-016	377 6	2250	H-200×100×5_5×8	16	30.0	PI 16	366.8	2- 6 Φ	328 5	521 7	58.3
	1	1			050.0			1							

▶ b : 鉄骨幅

_bd : 鉄骨せい

sĴb

B_c

 D_c

Ρ,

λ

 σ_{ry}

 F_c

α

re a

 necy
 : 鉛直鉄筋の降伏応力度
 (N/mm²)

 ,d
 : 鉛直鉄筋間距離
 (mm)

主筋の付着強度 τ_b は、 $\tau_b = 5\sqrt{F_c}$ とした。**図**-6(a)、 (b)は、11体の試験体の実験結果を用いて、提案 された設計式の妥当性を検討したものである。

	実験値		計算値	· · · · ·	実験値/計算値※	参考文献	
試験体名	P _{exp.} (kN)	支圧耐力	アーチ耐力	$P_{theo.}$ (kN)	P _{exp.} /P _{theo.}		
ION	41.4	32. 7	22. 6	55. 3	0. 748	2	
12N	50. 5	32. 7	22. 6	55. 3	0. 913	2	
PF53	73. 2	47. 0	29. 2	76. 1	0. 961	3	
A41	168. 0	1 04 . 5	99 . 3	203. 8	0. 824	4	
A42	187. 0	104. 5	99 . 3	203. 8	0. 917	4	
A43	217. 0	104. 5	67 . 1	171.6	1. 26	4	
A44	222. 0	104. 5	67 . 1	171.6	1. 29	4	
A45	221.0	1 04 . 5	65. 8	170. 3	1. 30	4	
A46	119.0	71.7	57. 4	129.0	0. 920	5	
A48	142.0	90. 2	83. 6	173.9	0. 820	5	
WH0002N	58. 3	33. 1	23. 6	56. 7	1. 028	6	

表-2 実験値と計算値の比較

※平均値は 1.02, 標準偏差は 0.20 および変動係数は 19.9%となる。

図-6(a)の□はアーチの耐力,■ は支圧耐力, ●は実験値を示す。結果的に、11体総てにおい て、内部要素から外部要素に伝達される耐力の 方が大きかったため、アーチ耐力分で決まった。 図-6(b)は、縦軸に実験値 P_{exp},横軸に計算値 P_{theo}を示す。実験値の大部分は、実験値と計算 値の比が、0.80~1.20の範囲に分布していること がわかる。表-2は、実験値と計算値の比較を示 す。これより、実験値と計算値の比較を示 す。これより、実験値と計算値の比較を示 す。これより、実験値と計算値の比較を示 す。これより、実験値と計算値の比較を示 す。これより、実験値と計算値の比較を示 す。これより、実験値と計算値の比較を示

5. 結語

S 梁が RC 柱を貫通する最も基本的な形式の RCS 柱梁接合部の支圧耐力設計式が提案された。 計算値と実験値はよく対応しているが, 個々の 試験体についてみてみると計算値と実験値が対 応していないものもあり, 今後更に検討してい く予定である。

参考文献

1) 日本建築学会:鉄筋コンクリート柱・鉄骨

梁混合構造の設計と施工,2001年1月.

- 西村泰志,南宏一:はりS・柱RCで構成される内部柱はり接合部の応力伝達機構,日本建築学会構造系論文報告集第401号, pp.77-85,1989年7月.
- 為井拓三,小山高志,山下恵司,山地貴裕, 馬場望,西村泰志:ハイブリッド構造に関す る日米共同構造実験研究(RCS-26)柱はり 接合部の内部パネルから外部パネルへの応 力伝達機構に関する一実験(その3),日本 建築学会大会学術講演梗概集(関東), pp.1061-1064,1997年9月.
- 田村幸一,佐藤龍生,成原弘之,勝倉靖:簡 易な仕口による柱RCS 複合構造の実験(その 1 実験概要),日本建築学会大会学術講演梗 概集(北陸), pp. 1893-1894, 1992 年 8 月.
- 5) 成原弘之,飯島昭治,西田哲也,鈴木裕美: 簡易な仕口による柱RC梁S複合構造の実験 (その4梁降伏型骨組の性能検証と復元力 特性モデル),日本建築学会大会学術講演梗 概集(東海),pp.1665-1666,1994年9月.
- 6) 植岡豊博,福田勉,西村泰志,南宏一:はり
 S 柱 RC で構成される接合部の補強効果に
 関する研究,日本建築学会大会学術講演梗
 概集(北海道) pp. 1309-1310 昭和61年8月.