論文 CFT圧縮ブレースを用いたRC造架構の耐震補強法に関する実験 的研究

北島 幸一郎"・中原 浩之"・崎野 健治"

要旨:既存不適格の鉄筋コンクリート造建物の耐震補強法として, 圧縮抵抗型のCFTブレースによる補強法 を提案し, その補強効果を検証するために4体の骨組試験体を用いた静的水平加力実験を行った。補強した 試験体の破壊モードは, それぞれ, 風上側柱のパンチングシア, ブレースの座屈, 風上側柱の引張降伏を想 定しており, 全ての破壊モードにおける耐力と変形性能を実験的に考察した。 キーワード: 角形 CFT ブレース, 柱の軸引張降伏, パンチングシア, 座屈

1. はじめに

1995年の阪神・淡路大震災を契機に「建築物の耐震改 修の促進に関する法律」が制定された後、「既存鉄筋コ ンクリート造建築物の耐震診断基準」¹⁾(以下,診断基準 と呼ぶ)に基づく耐震診断・改修が急速に普及した。診 断対象建築物の中には構造耐震指標Isoの値が構造耐震判 定指標 Isoの値を下回り,耐震補強が必要な建物が少な からず存在していることが示されている。²³⁾

ここでは、福岡県で行われた教育施設178棟の耐震診 断結果を纏めた文献⁴⁰のデータを引用して、福岡におい て提案されている補強法について示す。文献⁴⁰では補強 が必要と判定された建物に対して図-1のような内訳の 補強法が提案されている。図より、鉄骨ブレースによる 補強が最も多く提案されていることが分かる。「鉄骨ブ レース」は、そのほとんどが鉄骨枠付きブレースによる 補強法である。

「既存鉄筋コンクリート造建築物の耐震改修設計指針」⁵ (以下,改修指針と呼ぶ)によると,鉄骨枠付きブレー スの典型的な補強工法例が次のように示されている。

- 1) 鉄骨枠付きブレースを作成する。
- 2) 鉄骨枠に頭付きスタッドを配置する。
- 3) 既存 RC フレーム内のたれ壁, 腰壁, そで壁を除去 する。
- 4) 既存RCフレームに、頭付きあと施工アンカーを埋 め込む。
- 5) 鉄骨架をRCフレームにはめ込み,隙間に無収縮モ ルタルを圧入して一体化する。

改修指針では,2)と4)のスタッドとアンカーは,D16 もしくは16 ø以上のものとして,ピッチは250mm以下 とすると規定されている。このように鉄骨枠付きブレー スは,施工性に優れた補強法とは言い難く,この煩雑さ は,ブレースに引張力が作用した状態での鉄骨部とコン クリート部の応力伝達の難しさが起因していると考えら れる。ブレースに圧縮力が作用していれば,RC部と鉄

骨部は圧着した状態になるので、スタッドやアンカーが 不要となり、結果的に鉄骨枠も不要となる。つまり、ブ レースに圧縮力のみが作用するようにすれば、施工面で 大幅な改善が得られると考えられる。施工面での改善 は、コスト削減や居ながら施工を可能として、耐震補強 の更なる普及が期待できる。

上記のことを踏まえ、著者らは文献。において、軸圧 縮剛性と耐力が大きい角形 CFT ブレースを用いた耐震 補強試験体を製作し、この補強法の構造特性を実験によ り検討してきた。しかしながら、これまでの研究では、 試験体数が1体で載荷軸力が通常の建物に比して小さい ものとなっていた。本研究では、試験体数を4体に増や し、載荷軸力を3階建の建築物に対応するレベルまで引 き上げて実験を実施した。

2. 実験概要

2.1 試験体

実験に用いた試験体は、桁行方向スパン4.5mのRC造 学校校舎の1層1スパン部分を取り出して1/2に縮小し たモデルである。試験体の一覧を表-1に示す。試験体 名07NS 試験体は、柱-梁からなる純フレームで、補強 前の性状を確認するために作成した。07RP 試験体およ び 08RF 試験体は、07NS 試験体に□150×150×6.0角 形鋼管にコンクリートを充填して作成した CFT ブレー スを取り付けたものである。07RP 試験体は風上柱の柱

•1	九州 電力㈱土木部原 子力グループ	九州大学社会人大学院生		(正会員)
*2	九州大学大学院人間環境学研究院	准教授	博士 (工学)	(正会員)
*3	九州大学大学院人間環境学研究院	教授	工博	(正会員)

頭部でのパンチングシア破壞時に最大水平力を発揮する ものとして計画した。08RF 試験体は,風上柱の引張降 伏時に最大水平力を発揮するものとして計画した。 07RB試験体は,07NS試験体に□100×100×3.2のCFT ブレースを取り付けたものであり,ブレースの座屈に よって最大耐力を発揮するものとして計画した。

07RP 試験体の詳細を図-2に示す。試験体のスパン は柱の芯-芯間距離で2250mm,高さは梁の芯-芯間距 離で1500mmとした。柱は250mm×250mmの正方形断 面で、2階及び1階梁のせいは同一で300mmとした。一 方で、梁幅は、2階で200mm、1階で170mmとした。1 階梁幅を狭めている理由は、加力装置と試験体を緊結す るための孔の間隔が300mmしかないためで、実験装置 上の条件により決定した。加力スタップは、せい400mm ×幅490mmであり、これにPC鋼棒を貫通させて試験体 を試験装置に固定している。

柱の配筋は、主筋10-D10とし、主筋比 p_g は1.1%である。帯筋は6 ϕ @75で帯筋比 p_m =0.3%とした。これは実大の柱では、13 ϕ @150となり、1971年から1981年の間に建設された建物の配筋を模擬したのもである。梁の配筋は、上端筋および下端筋ともにそれぞれ4-D13で、引張鉄筋比 p_r =1.1%とした。あばら筋は6 ϕ @100で、あばら筋比 p_m =0.28%とした。

2.2 材料特性

試験体名

07NS

07RP

07RB

08RF

コンクリートの力学的性質を表-2に示す。実験実施 時のシリンダー強度は07NSが20.2MPa, 07RP及び07RB が20.5 MPa, 08RFが15.2MPaであった。RCフレーム

	વ		
配核雪	立 王 朝		
4-D13-			81,1
	St Ø6 @100		8 8
4-013-			
3-010	CFT 		8 8
Headp #6 #75 #2 -2-D10 		-13171-	2
D19 @100			
4-013			<u><u>s</u></u>
4-019			8 8
4-D19	e150		
	1		

表-1 試験体一覧

ース

補強ブレー

なし

 $\Box -150 \times 150 \times 6.0$

 $\Box -100 \times 100 \times 3.2$

□-150×150×6.0

破壞形式

柱の曲げ降け

スの

上柱のパンチ

風上柱の

図-2 試験体形状及び配筋図

のコンクリートは耐震診断の対象となる建物を意図し て、シリンダー強度が15~25MPa程度となるように計 画した。07RPと07RBのブレースに充填したコンクリー トは、フレームと同じコンクリートで、08RFのそれは 圧縮強度が30MPa程度のコンクリートを別途打設した。 ブレースとフレームの接合には、高強度かつ高流動のコ ンクリートを使用した。これらは80MPa以上の圧縮強 度が得られている。表-3,表-4には使用した鋼材の 材料特性を示す。D10とD13はSD295で、鋼管は STKR400を使用した。

2.3 補強部のディテール

補強材の設置手順は、ブレースをフレームの対角線上 に仮留めし、接合部分の柱とブレースを同時に挟み込む ようにPL6もしくはPL9の鋼板を取付け、その後、柱と 梁の隙間から高流動コンクリートを流し込んだ。ブレー ス接合部の詳細を図-3に示す。(a)は、07シリーズの 試験体で、(b)は08試験体の接合部を示している。(a) の接合部鋼板は設置したまま実験を行ったが、鋼板は応 力を負担せず、高流動コンクリートの型枠としてのみ機 能することを意図している。一方で、(b)の08試験体で は、ブレースのエンドプレートと接合部鋼板を突合せ溶 接している。さらに、鋼板にはリブを設けており、鋼板 が負担する応力を高流動コンクリートを介して柱梁接合 部に伝達させることを意図している。これは、後述する 柱上端のパンチングシア破壊を防止するための補強法で ある。

本実験では、ブレースの圧縮力が消失するとブレース

	呼び強度	圧縮強度	ヤング係数	水セメント	エアー
	(MPa)	(MPa)	(GPa)	比(%)	(%)
07NS	18	20.2	25.1	76	5.0
07RP 07RB		00.5			
07RPプレース 07RBプレース	18	20.5	24.6	/6	4.3
07RP接合部 07RB接合部	60	84.2	41.3	33	1.5
08RF	15	15.2	26.1	76	6.5
08RFブレース	30	33.6	38.7	48	5.5
08RF接合部	60	104.2	50.0	33	6.0

表-2 コンクリートの力学的性質

表-3 07NS, 07RP, 07RB 試験体の鋼材の機械的性質

鋼材の種類	降伏強度 (MPa)	降伏ひずみ (%)	引張強度 (MPa)	降伏比
6φ	378	0.18	547	0.69
D10	348	0.17	486	0.72
D13	348	0.17	498	0.71
$\Box 100 \times 100 \times 3.2$	413	0.20	469	0.88
150 × 150 × 6.0	369	0.18	436	0.85

表-4 08RF 試験体の鋼材の機械的性質

鋼材の種類	降伏強度 (MPa)	降伏ひずみ (%)	引張強度 (MPa)	降伏比
6φ	402	0.20	570	0.71
D10	370	0.18	528	0.70
D13	349	0.17	491	0.71
□150 × 150 × 6.0	390	0,19	473	0.82

寸法単位:mm

とRCフレームが離れるためブレー スの落下が危惧される。これを防 止するため、図-4に示すブレー スの脱落防止装置を設けた。接合 部上部は、ニードルベアリングに よって実験中のブレースの図芯位 置を保持している。一方で、接合部 下部は、D16の異形鉄筋をブレース のコンクリート打設時に挿入して おき、高流動コンクリートでRCフ レームと接合している。但し、図ー 4の端部詳細は、08RF 試験体には 取り付けていない。

2.4 加力方法

本実験に用いた加力装置を図-5に示す。試験体には、500kN油圧 ジャッキにより、柱1本あたり

180kNの鉛直軸力を載荷し,実験中一定に保持した。水 平方向の加力は水平変位によって制御した。載荷プログ ラムは,正負交番漸増振幅で,層間変形角R=0.25/100rad ずつR=2.0/100radまで各変位振幅ごとに3回の繰返し とした。処女載荷は、図-5において水平ジャッキが圧 縮,フレームが右に変形する方向であり,以降,この方 向を正側とする。

3. 実験結果

実験で得られた各試験体の水平力Q-層間変形角R関 係を図-6に,正側加力時の初期剛性と最大水平耐力を 表-5に示す。図-6の層間変形角Rは,左右の柱の柱 頭で観測した水平変位の平均値を試験体高さ(1500mm) で除したものである。各試験体の破壊状況を以下に示 す。

3.1 07NS 試験体

R=0.5/100radで柱脚にR=1.0/100radで柱頭に曲げひび 割れが生じ,正側加力時において,R=1.25/100radで最大 耐力135kNを発揮している。最大耐力時における柱端部 の引張側主筋に添付したひずみゲージの値より,主筋の 降伏が確認され,想定したとおり柱の曲げ破壊によって 最大耐力を発揮しているものと考えられる。荷重一変形 関係は,通常のRC柱の曲げせん断挙動と同じで,スリッ

図-4 ブレース端部の詳細

プ型の履歴特性を示している。軸力比は、0.14と小さい ため最大耐力発揮後も安定した履歴ループを描いてお り、実験終了時まで脆性破壊は発生しなかった。

3.2 07RP 試験体

以降の試験体は,正側加力時のみにブレースが圧縮力 を保持するため,補強効果は正側のみに現れる。負側は 基本的に07NSと同様の挙動となる。R=0.75/100radで最 大耐力634kNを発揮した。最大耐力時には,写真-1の ように風上柱の上部におけるパンチングシア破壊が確認 された。パンチング破壊発生後,水平耐力は漸減するも のの顕著な耐力低下は観測されなかった。表-5に示す ように最大耐力及び初期剛性は,07NS試験体と比較し て,それぞれ4.7倍,10.7倍の値となった。ブレースに よる耐震補強により大幅な耐力と剛性の増大が期待でき ることが分かる。負側は07NS試験体と同様の荷重-変 形関係が得られており,負側加力時のフレームの変形に

····	初	期剛性	最大耐力			
試験体	<mark>実験値</mark> (MN/m)	07NSとの比	実験値 (kN)	07NSとの比	計算値 (kN)	実験値/計算値
07NS	19		135		127	1.07
07RP	208	10.7	634	4.7	474	1.34
07RB	116	6.0	574	4.2	567	1.01
08RF	295	15.2	734	5.4	709	1.04

表-5 初期剛性と最大耐力

補強ブレースが関与していないことが分かる。

3.3 07RB 試験体

正側加力時において, R=0.8/100radでブレースが曲げ 座屈を生じ, 574kNの最大耐力を発揮している。表-5 に示すように,最大耐力と初期剛性は07NS試験体と比 較して,それぞれ4.2倍,6.0倍の値となっている。ブレー スの断面が小さい分,最大耐力と初期剛性の増大は, 07RPほど期待はできないが,両者とも4倍以上の構造性 能の向上が見られる。ブレース座屈後は,徐々に水平耐 力が小さくなるが,実験終了後も400kN程度の水平力を 負担できていることが分かり,R=2.0/100radの大変形時 においても07NSの3倍以上の水平耐力を保持すること が可能であることが示された。07RPと07RBを比較する と,最大耐力発揮後の挙動では,07RPの方が耐力低下

は小さい。従って、避けるべき破壊と されているパンチングシアであって も、水平耐力保持の観点からはブ レースの座屈よりも有利であると考 えられる。一方で、震災後の補修の観 点からは、パンチングシアよりもブ レースの座屈の方がRCフレームに 及ぼす影響が小さいため、ブレース の座屈が有利であると考えられる。

3.4 08RF 試験体

正側加力時において, R=0.5/100rad の時点で風上柱の全長にわたって層 状のひび割れが確認できた。これは 柱が引張破壊する際の典型的なひび 割れ状況である。この時の柱中央部 の主筋に添付したひずみゲージの値 は降伏ひずみに達しており,ひび割 れ状況とともに,風上柱全体が引張 降伏したことを示している。R=0.5/ 100radの時点で既に水平耐力は 728kNとなり, R=0.75/100radの時点 で732kNを記録した。最大耐力は,こ れらとほぼ同じ734kNでR=0.9/ 100radの時に発揮した。風上柱の引 張降伏後,耐力低下のない安定した

写真-1 07RP 試験体の破壊状況(実験終了後)

-1576-

挙動が得られていることが分かる。

最大耐力発揮後,07RPにおいて破壊が観測された風 上柱の柱頭部に,複雑なパンチングシア破壊が観測さ れ,R=1.0/100radより徐々に耐力劣化を起こした。 R=1.25/100radの1回目の正側加力時に,柱頭部の接合鋼 板がずれて変位計を保持するために試験体に埋め込んだ M16のボルトに接触した。この為,R=1.25/100radの載 荷スケジュールを変更して1回に留め,続くR=1.5/ 100radの正側加力を1度行い実験を終了した。R=1.25/ 100radの加力サイクルからは,水平変位の測定が正確で ないことを鑑み,この部分の荷重-変形関係は点線で示 している。

4. 実験結果の評価

図-7の断面力図に基づき,実験で得られた水平耐力 の評価法について考察する。Q_c,Q_bは,それぞれ柱と梁 のせん断力で,M_cは柱の節点曲げモーメントである。 calQは図-7で仮定した崩壊メカニズム時の水平耐力の 計算値である。

4.1 07NS 試験体

このフレームは柱の曲げ降伏により崩壞メカニズムが 決定されていると考えられるので、柱断面の曲げ終局強 度 M_m が分かれば、 $_{cal}Q$ を算定できる。 M_i は診断基準の終 局曲げ耐力式¹⁾で算定した。実験終了後の破壊状況の観 察から柱のヒンジ領域はD/2 (Dは柱せいを示す)であっ たため、 M_i は柱端部からD/4離れた断面の終局耐力とし た。線材モデルの節点曲げモーメント M_c は、 M_a を幾何 的に増加させた値としている。 M_a の算定に当たっては、 柱軸力が必要となるが, M_c との釣り合いから順次梁の曲 げモーメント M_b と Q_b を定める収束計算を行って、崩壞 メカニズム時の断面力図を決定した。この結果 $_{cal}Q =$ 127kN となり、実験値を7%の誤差で評価できた。

4.2 07RP 試験体

この試験体の_{ca}Qは、風上柱柱頭のパンチングシア破 壊と風下柱の曲げ破壊に対応する値から算出している。 風下柱のせん断力は、Q_c=80kNとなる。一方、パンチ ングシア耐力Q,は改修指針⁹を元に次式により求める。

$Q_{P} = (Q_{Ac} + Q_{Asw}) \cdot k_{min}$	(1)
ここに	
$Q_{Ac} = A_c \cdot (0.22F_{cl} + 0.49\sigma_l)$	(2)
$Q_{Asy} = A_{sy} \cdot (0.98 + 0.1F_{c2} + 0.85\sigma_2)$	(3)
$k_{\min} = 0.34/(0.52 + a/D)$	(4)
ての対応4は、「間」のパニナトこと	パンオンガンマ

この試験体は、図-8に示すように、パンチングシア 破壊部において、柱部とブレースの接合コンクリート部 の2つの部分でせん断力に抵抗している。式(1)の Q_{Ae} , Q_{Aw} は、それぞれ柱部と接合コンクリートのパンチング シア耐力で、 A_{e} 、 A_{m} はそれぞれ柱部と接合コンクリー トの断面積, Fc,, Fc,はそれぞれ柱部と接合コンクリートのコンクリート強度である。σ,とσ,は、軸圧縮応力で 次式によって算定した。

$$\sigma_{l} = N/(A_{c} + A_{sw}) + A_{s} \cdot \sigma_{y} / A_{c}$$
⁽⁵⁾

$$f_2 = N/(A_c + A_{sw}) \tag{6}$$

ここに、Nは柱頭における載荷軸力, A,は柱主筋の全 断面積, ,σ,は柱主筋の降伏強度である。このように柱部 分の軸圧縮応力は、主筋の影響を考慮している。この計 算では、図-7に示す梁と接合コンクリートの接触面積

 A_b 部分におけるせん断力の伝達はないものと仮定している。 k_{min} はせん断スパン比a/Dによる強度低減係数であり、a/Dの増加に反比例する傾向にある。写真-1に示すように、本試験体は梁の直下においてすべり破壊が生じているため、せん断スパン比を0として k_{min} を算定している。

以上より07RP試験体の水平耐力を計算すると, calQは 474kNとなり,実験値は計算値より34%大きい。上記の 方法によるとパンチングシア耐力を過小評価することに なるが,この破壊モードを選択しない場合は安全側の評 価であり問題はない。しかしながら,積極的にこの破壊 モードを実現させるためにはパンチングシア破壊強度を 精度良く評価する手法の開発が必要で,これについては 今後の課題としたい。

4.3 07RB 試験体の計算結果

崩壊メカニズム時の水平耐力は、ブレースの曲げ座屈 により決定している。ブレースの軸圧縮耐力N_gは「コン クリート充填鋼管構造設計施工指針」ⁿの CFT 長柱の軸 圧縮耐力式を使用して算定した。ここで、ブレースの座 屈長さをブレース材の0.7と仮定すると、_{cal}Q が 567kN となり、実験値の574kNを1%の誤差で推定できる。但 し、ブレースの座屈長さを決定する要因となる両端の固 定度については、接合部詳細によって大きく変動する可 能性があるので、ブレースの座屈を崩壊モードとして選 択する場合には、ブレースの接合部端部の力学性状につ いて詳しく検討する必要がある。

4.4 08RF 試験体

この試験体は,風上柱の引張降伏によって崩壊メカニ ズムが形成され,その水平耐力_{cal}Qは,加力点の力の釣 り合いから次式で求めることができる。

$$\omega Q = (N + |N_e| - |Q_b|) \cdot l / h + |Q_e|$$
⁽⁷⁾

ここで、Nは柱頭に載荷した軸力、N_eは柱の引張軸力、 I はスパン長さ、h は梁の芯-芯間距離である。_{ea}Q は 709kN で実験値より4%小さい値となった。

図-8 パンチングシア耐力算定時のせん断力負担部分

5. まとめ

本論では、スタッドやアンカーを必要としない、圧縮 ブレースによる既存鉄筋コンクリート造建物の簡易耐震 補強法の提案を行い、想定する崩壊メカニズムを変えた 複数の試験体を作成し、一定軸力下における水平加力実 験を行った。得られた結論を以下に列挙する。

- 同一のRCフレームの補強に際して、ブレースの寸法 とブレースの接合詳細を変更することで、風上柱の 引張降伏、風上柱のパンチングシア破壊、ブレース の座屈の3通りの崩壊メカニズムを実現させること ができた。
- いずれの崩壊メカニズムを呈した場合でも、耐力・ 剛性ともに補強前の4倍以上の性能が確認できた。
- 3)各破壊モードにおける水平耐力を本論で示す簡便な 計算法でほぼ評価できることが示された。但し、パ ンチングシア耐力とブレースの座屈長さの評価に関 しては更なる検討が必要な事が分かった。
- 4) 崩壊メカニズム形成以降の変形性能は、風上柱の引 張降伏、風上柱のパンチングシア破壊、ブレースの 座屈の順に優れていることが分かった。但し、風上 柱の引張破壊モードは、更に変形が進むと風上柱の パンチングシア破壊に移行するので、ブレースとフ レームの接合詳細に関して更なる改良が必要である ことが示された。

謝辞

実験にあたっては、川口晃氏, 窪寺弘顕氏, 久島昭久 氏の協力を得た。ここに記して関係各位に謝意を表しま す。

参考文献

- 1) 日本建築防災協会:2001年改訂版既存鉄筋コンク リート造建築物の耐震診断基準・同解説,2005.2.
- 2) 文部科学省ホームページ, http://www.mext.go.jp/
- 3) 日経BP社: 日経アーキテクチャ特別編集版, 2007.5.
- 日本建築学会:2005年福岡県西方沖地震被害調査報告,2005.9.
- 5) 日本建築防災協会:2001年改訂版既存鉄筋コンク リート造建築物の耐震改修設計指針・同解説, 2005.2.
- 6) 北島幸一郎,下畠啓志,中原浩之,崎野健治:圧縮 抵抗ブレースを用いた RC 骨組の耐震補強方法に関 する研究(その1・その2),日本建築学会大会学術 講演梗概集,pp.549-552,2007.8
- 7) 日本建築学会:コンクリート充填鋼管構造設計施工 指針,1997.10.