[1071] コンクリートの破壊靱性(K_{IC}, G_{IC}, J_{IC})に及ぼす 骨材種別の影響

正会員 〇小野博宣(中部大学工学部) 正会員 大岸佐吉(名古屋工業大学)

1. まえがき

論 女

コンクリートの破壊事象の解明が求められており、中でも破壊靱性に関する研究が進展 しつつある[3-12]。破壊靱性は、特に脆い材料について重視されており、材料の破壊 力学的特質を表わす指標として重要である。コンクリートのように構成素材や、調合によ る品質が異なる材料では、破壊靱性値に及ぼす因子は多岐にわたり、まだ不明な点が多い。

本研究の目的は、コンクリートの限界応力拡大係数(K_{Ic})、限界ひずみエネルギー解放 率(G_{Ic})、弾塑性破壊靱性(J_{Ic})におよぼす、骨材種別の影響を、川砂・川砂利、砕砂・ 砕石、人工軽量骨材、高炉スラグ骨材の4種類について、実験的に検討したものである。

2. 破壊靱性(K_{ic}、G_{ic}、J_{ic})の解析法

本研究では、 G_{1c} を異なる2種類の方法、つまり a) K_{1c} からの誘導法と、 b) 解析的方法により求めた。以下に解析法を述べる。

2.1 限界応力拡大係数 K_{ic} (Fracture toughness: critical stress intensity factor)

4点曲げの切り欠きはりでは、K_{1c}は式(1)で得られる。

$$K_{1C} = \frac{3P(S_1 - S_2)}{2BD^2} a^{\frac{1}{2}} \gamma$$
 (1)

但し、Y = 1.99 - 2.47 (a/D) + 12.47 (a/D)² - 23.17 (a/D)³ + 24.8 (a/D)⁴ ここに、S₁;梁スパン、S₂;荷重間隔、P;全荷重、a;ノッチ深さ、B;梁幅、D; 梁高さ。

2.2 限界ひずみエネルギー解放率 G_{ic} (critical strain energy release rate)

a) K_{ic}からの誘導法

 $\mathbf{G}_{\rm IC} = \frac{1 - \nu^2}{F} \mathbf{K}_{\rm IC}^2$ ⁽²⁾

b)解析的方法
$$G_{IC} = \frac{(1-\nu^2)\sigma_n^2(D-\alpha)}{E} f(\alpha/D)$$
 (3)

但し、f (a/D) = π (a/D)(1-a/D)³, σ_n = 3P(S₁-S₂)/2B(D-a) である。 ここに、P, S₁, S₂, D, aは、上記式(1)と同様である。 ν ;ポアソン比、E;ヤング係 数である。

2.3 弾塑性破壊靱性 J_{ic}(J-integral)

Rice-Paris¹⁰は、比較的深い切欠き供試体のJ_{ic}積分が次式で求められることを示した。

$$J_{1c} = \frac{2}{B(D-a)} \int_{0}^{0cmax} P(d\delta_{c}) = \frac{2}{B(D-a)} A = \frac{2}{B(D-a)} (A_{T} - A_{U})$$
(4)

式(4)において $A_u \ll A_T$ の場合は、 $A_u = 0$ とみなして式(4)は、式(5)の如く表わしうる。

$$J_{IC} = \frac{2}{B(D-\alpha)} A_{T}$$
(5)

ここに、B, D, a は(1)式と同様の値を示し、A_Tは梁の荷重・変位曲線から求められた面積を表わす。

- 403 -

3. 実験方法

3.1 使用材料

普通ポルトランドセメント($\rho = 3.16$), 骨材は、川砂・川砂利、砕砂・砕石骨材、人 工軽量骨材(メサライト、以下A・L・A・と記す)、高炉スラグ骨材(以下Slagと記す) の4種類を用いた。骨材の物理的性質を表-1に示す。

3.2 試験項目と調合(配合)

試験項目は、1)はり断面寸法効果(7.5×7.5、10×10、15×15、20×20 cmの4 通り)2)粗骨材容積比効果($V_g/V_c = 0 \sim 0.58$ 間の4水準)、3)水セメント比効果 (W/C = 0.52、0.60、0.70の3水準)4)粗骨材最大粒径効果(5~10 mm、10~20 mm、30~40 mmの3水準)。表-2にコンクリート種別毎の、試験項目、調合、スランプ(-部フロー値)、空気量、単位容積重量、硬化後のヤング係数、ポアソン比を示した。供試体 は一試験条件につき6本とした。コンクリートの基本配合は、骨材の種別に関係なく、各 材料の容積比が一定となるように計画した。

3.3 実験方法

コンクリート供試体は、林令28 日まで水中養生後、供試体底面中 央部に刃の厚み2.3mmの回転式カッ ターにより、所要の深さ比(a/D=0.2)となるように正確にノッチ を入れた。はりの曲げ試験は4点 曲げノッチビーム法により行い、 荷重ははり上側に取り付けたロー ドセルを介して載荷し、曲げたわ みは、変位計(差動トランス型) により検出した。油圧万能試験機

表-1 骨材種別と物理的性質

Kinds of aggregate		Specific Absorption gravity capacity (p) (%) wt.		Maximum size (mm)	Finess modulus (F.M.)	
River	sand	2.53	0.86	5	2.72	
	gravel	2.65	0.84	25	6.02	
Crushed	sand	2.71	0.44	5	2.64	
	gravel	2.67	0.92	25	6:90	
Artificial light weight	sand	1.85	14.3	5	2.69	
	gravel	1.65	27.0	20	6.32	
Blast fur. slåg	sand	2.61	0.51	2.5	2.14	
	gravel	2.66	2.72	25	6.76	
					1	

を用い、変形曲線の下降域の正確を期すためにPS鋼棒(ダ 31.2 m) 2本により、試験機の剛性を増大した。

Kinds of concrete	Factors of test	Mixing proportion by weight C / W / S / G	Slump (cm)	Content air (%)	Weight unit/V (kg/l)	Young's modulus x10 ⁵ (kgf/cm ²)	Poisson's ratio
River sand, gravel conc.	Size of specimens*1	1 /0.53/1.80/2.70	19.1	0.6	2.4	3.51	0.21
Crushed sand, gravel conc.	Size of specimens*1	1 /0.59/1.64/2.44	16.0	0.4	2.3	2.63	0.20
Artificial light weight sand ,gravel concrete	Size of specimens ^{*1}	1 /0.59/1.21/1.58	18.1	2.5	1.7	1.63	0.22
	W/C	1 /0.60/1.28/1.68 1 /0.70/1.28/1.68	19.9 23.2	3.8 2.8	1.7 1.6	1.53 1.48	0.21 0.22
	$v_g/v_c \begin{cases} 0\\ 02\\ 0.58 \end{cases}$	1 /0.52/1.21/0.0 1 /0.52/1.21/0.63 1 /0.52/1.21/3.54	(243mm)*2 22.2 15.0	1.6 2.2 5.6	1.8 1.8 1.6	1.61 1.45 1.54	0.24 0.23 0.21
Blast furnance slag sand, gravel concrete	Size of specimens*1	1 /0.60/1.70/2.47	19.6	3.7	2.3	2.84	0.23
	v_g/v_c $\begin{pmatrix} 0\\0.2\\0.58 \end{pmatrix}$	1 /0.60/1.87/0.0 1 /0.60/1.87/1.09 1 /0.60/1.70/5.53	(213mm)*2 21.4 0.2	3.0 3.7 4.0	2.1 2.2 2.4	2.46 2.83 2.95	0.23 0.23 0.21
	Max. gravel 20 size 40	1 /0.60/1.74/2.62	11.5 16.4 -	4.3 4.3 4.4	2.3 2.3 2.2	2.95 2.92 2.80	0.23 0.24 0.27

表-2 コンクリートの調合(試験要因)諸物性

*1 Size of specimens: 7.5x7.7x30, 10x10x40, 15x15x60, 20x20x80 (cm), *2 Flow value

4. 結果と考察

4.1 K_{1c} 、 G_{1c} におよぼすはり断面寸法効果

図-1、図-2は、それぞれ砕石コンクリート、川砂・川砂利コンクリートにおける K_{Ic} 、 G_{Ic}に及ぼすはり断面寸法の影響を示す。両図ともに、はり断面寸法が増加するにつれ、 靱性値も増加する傾向が明らかである。そして、砕石コンクリートの靱性値のD依存が川 砂利コンクリートよりも顕著であることが知られる。また、G_{Ic}の解析二方法による値を 比較すると K_{Ic} 誘導法による値が、全般に解析的方法に比べ大である。供試体断面寸法が 200×200 mmと大きい場合にはその差がより明確である。この傾向は骨材がA・L・A, Slagの場合でも同様である。

一方、図-3、図-4は、K_{Ic}とG_{Ic}に及ぼす骨材別のはり断面寸法効果を示したものであ る。骨材種別により、K_{Ic}値は大きく異なり、その値は、川砂利>砕石>Slag>A・L・ A.の順に小さくなっている。また、A・L・A・では、はり断面寸法が約2.7倍になっても K_{Ic}値は、約1割程度の増大にとどまり、変化が小さい。一方、G_{Ic}については、はり断 面が7.5~10 cmの比較的小さい場合には、その値は骨材の種別に関係なく接近した値であ るが、15~20 cmと断面が増大すると、その差異が大となること、特に、砕石骨材のG_{Ic} 値が、他の骨材と比べ格段に高い値(A・L・A・の2倍値)を示すことが注目される。 Mindess¹¹⁾、Carpinteri⁴⁾らもG_{Ic}が断面寸法の増大につれ増えることを示し、本実験 と同様の傾向にある。K_{Ic}、G_{Ic}ともに骨材種別に大きく依存する。

図-5 A.L.A.Conc. $\mathcal{O}_{G_{1c}} \geq (V_g / V_c)$ 関係 図-6 Slag Conc. $\mathcal{O}_{G_{1c}} \geq (V_g / V_c)$ 関係

4.2 K_{1c} 、 G_{ic} におよぼす粗骨材容積比(V_g / V_c)依存性

試験コンクリートの粗骨材容積比(Vg/Vc)は4水準であり、図-5、図-6にA. L.A.コンクリート、Slagコンクリートのそれぞれの結果を示す。これらによれば、両 骨材の靱性 K_{Ic} と G_{Ic} の(V_g / V_c)依存性が互に逆の傾向を示しており、注目すべき事で ある。また、 $\boxtimes -7$ は K_{Ic} の(V_g / V_c)の影響を、 $\boxtimes -8$ は G_{Ic} の(V_g / V_c)の効果を 示したものである。両図中の川砂利コンクリートのデータは文献1)から引用比較したも のである。筆者らの既往の研究¹⁾や、小柳⁶⁾、Peterson⁹⁾らの報告においても G_{Ic} が(V_g / Vc)の増大につれて低下することが示されており、本実験結果のSlag コンクリートは特 異な結果となっている。ただし、戸川ら⁷¹は G_{1c} の(V_{a} / V_{c})効果について、川砂利、砕 石、A.L.A.コンクリートで三様の異なる結果を得ている。一般に、コンクリート中の粗 骨材量が増すほどコンクリートのマトリックスと骨材の付着力の総体が低下し、破壊まで のポテンシャルエネルギーが減少する。このためGicが低下するものと思われる。しかし、 コンクリートの配合、骨材の品質、形状などにより、逆に骨材量を増すと破壊亀裂進展を 抑止させる働きを生じ、Slagコンクリートのように (V_g / V_c)の増加と共に、G₁c値が 増大するものと考えられる。A.L.A.コンクリートの K_{1c} の(V_g/V_c)依存性は戸川ら⁷ の報告と類似の傾向を示してい。これらの理由の一因として、供試体の破断様相の相違が あげられる。即ち、図-11に示す如くA.L.A.では、骨材自体が破断したものが多く、 マトリックスよりも弱い骨材では(Vg / Vc)の増加につれKic 値が低下すると考えられ る。

図-9 Slag conc.の骨材寸法とGic、Kic 図-10 A.L.A. conc.のW/CとGic、Kic

4.3 K_{ic}、G_{ic}におよぼす、粗骨材最大径の影響

コンクリートの重量調合を一定として、使用骨材の最大径を10、20、40(mm)の3水準で試験した。スラグ骨材の結果を図-9に示す。骨材の付着破壊型の川砂利コンクリートに関する筆者¹⁾、戸川⁷⁾、Peterson⁹⁾の諸研究が、骨材粒径dの増大に伴い、K_{Ic}、G_{Ic}が増すと報告している。これに対して本実験のSlagコンクリートでは、逆に径dの増大につれ、靱性値が減少した。これは、図-11の破断形式(C)にみられる如くSlag骨材では、マトリックス破断と付着破断の混合に基因したものと考えられる。

4.4 K_{IC}、G_{IC}におよぼすW/C比の影響

A.L.A.コンクリートのW/C=0.52、0.60、0.70の3水準における靱性値の試験結 果を図-10に示す。同図中に筆者らの既報¹の川砂利コンクリートの結果を参考のため示 した。一般に、W/Cが大きいほど、強度値が低下しまたK_{1c}も低くなる。これは亀裂成 長に対する抵抗性が減少するためと考えられるが、本実験では、G_{1c}値のW/C依存が認 められなかった。これは、曲げ破断面の類型化模式図(図-11)に示すようにA.L.A. コンクリートの破壊パターン(A)の骨材破断タイプが多かった事によるものと考えられる。 4.5 弾塑性破壊靱性(J_{1c})におよぼす、供試体寸法、粗骨材容積比、W/Cの依存性

コンクリートの弾性破壊パラメーター K_{1c} 、 G_{1c} に対し、弾塑性破壊パラメーターには、 J_{1c}、 G_{F} 、CODなどがある。本研究で試験したSingle edge notch beam (SEN)の 曲げ荷重・変位曲線からJ積分値を式(5)により求めた。図-12は、J_{1c}とはり断面寸法 の関係を示す。どの骨材種別も、D>100 mmの範囲でJ_{1c}が増大する傾向を示す。これに よりJ_{1c}値は梁断面と骨材の種別に依存する。A.L.A.が他の骨材に比べ1/2程度と低 く、 G_{1c} を含め明らかに他の骨材と量的に相違がみられる。次に、J_{1c}の(V_{g}/V_{c})効果

を図-13 に示す。これより Slag と A・L・A・両コンクリートの J_{1c}は、G_{1c}の変化の様相と 類似している。Slag の J_{1c}は (V_g / V_c) 比の増大につれ大きく、A・L・A・の場合は逆 に減少する。また、図-14の如く、A・L・A・の J_{1c}はW/Cの増加につれ増大する傾向 を示した。A・L・A・コンクリートのG_{1c}は、W/C=0.52~0.72の範囲で一定であるの と、明らかな相違がみられた。J_{1c}は各種の試験要因に影響されることがわかった。

5. 結論

川砂利、砕石、A.L.A.、高炉スラグの4種類の異なる骨材を用いたコンクリートの破 壊靱性値に関する試験の結果は、次のようにまとめられる。

- 1) コンクリートの弾性破壊靱性 K_{Ic} と G_{Ic} は骨材種別とはり断面寸法に依存する。断面 寸法依存の大きさの順は砕石>スラグ>川砂利>A·L·A·である。
- 2) $K_{Ic} \geq G_{Ic}$ におよぼす、単位粗骨材容積比 (V_g / V_c) およびW / Co 影響は、骨材の $種別で異なりA.L.A.では <math>(V_g / V_c)$ の増加につれ低下し、Slagでは増大する。
- 3) コンクリートの弾塑性破壊靱性 J_{1c}は、骨材の種別とはり断面寸法に依存する。依存の大きさの順は砕石>スラグ>川砂利>A.L.A.であり、K_{1c}とG_{1c}の変化の様相に似ている。

《謝辞》本研究は文部省科学研究費・試験研究(61850105)によったものである。実験 とまとめには、山田寛己技官、院生伊藤定文、学生山内高、西村俊也諸君の助力を得た。 謝意を表わす。

参考文献

- 1) 大岸佐吉、小野博宣; コンクリート工学、Vol. 26、No 2、Feb. 103-118 (1988).
- 2) 大岸佐吉、小野博宣;コンクリート工学、Vol. 25、No12、Dec. 101-117 (1987).
- 3) Wittmann, F. H. edited; Fracture Mechanics of Concrete, Elsvier Pub., Amsterdam, 542-661 (1983).
- 4) Carpinteri, A. and A. R. Ingraffea; Fracture Mechanics of Concrete, Martinus Nijhoff Pub., Boston, 85-94 (1984).
- 5) Sih, G. C. and A. Ditommaso edited; Fracture Mechanics of Concrete, Martinus Nijhoff Pub., (1985).
- 6) 小柳 治、境 賢治; セメント技術年報、25、264-269(1971).
- 7) 戸川一夫、佐藤、荒木;セメント技術年報、27、202-206(1973).
- 8) Alford, N.M. and A. B. Poole; Cem. and Conc. Res., 9, 583-589 (1979).
- 9) Peterson, P. E.; Cem. and Conc. Res., 10, 91-101 (1980).
- 10) Rice, J. R., P. C. Paris and J. G. Merkle. ASTM. STP-536, 231-245 (1973).
- 11) Mindess, S., F.V. Lawrence and C. E. Kesler; Cem. and Conc. Res., 7, 6, 732-742(1977).
- 12) 六郷恵哲、C. E. Kesler and F.V. Lawrence, 第2回コンクリート工学年次講演論文集、 125-128(1980).