報告

[2025] 繊維補強コンクリートを用いた軽量防音壁の破壊性状に 関する研究

正会員	0	松本	信之	(鉄道総合技術研究所)
正会員		斉藤	啓一	(鉄道総合技術研究所)
正会員		宮本	征夫	(鉄道総合技術研究所)

1.まえがき

鉄道高架橋に用いられている防音壁は、使用する材料と施工方法により、場所打ちRC高欄、 プロック高欄、二次製品としてのPC板やGRCパネル、および鋼製支柱等で支えられた石綿ス レート板等の形式に分けることができる. また、構造形式としては単に鉛直状のみでなく防音 効果を高めることを目的として逆L型やラムダ型等のものが用いられている.

音源対策としての防音壁の効果を評価する一つの指標として透過損失が用いられるが、これは 概ね使用材料の密度に比例し、現在の各種の騒音規制値を満足するのに最低限必要な重量は、高 さ 2m程度の一般の防音壁の場合単位長さあたり50kg/m程度 [1]であると言われている。一方、 上記に挙げた高欄のうち、場所打ちRC高欄やプロック高欄の場合では、単位長さあたり 800kg /mもの重量となる。

このため、高欄の重量を防音効果を低下させることなく低減することは、新たに高架橋を建設 する場合に経済的な設計が行えるばかりでなく、既設の高架橋においても車両の走行速度の向上 をする場合に構造物に加える負担を軽減できる可能性がある。

本報告は,鉄道高架橋の防音壁を単位長さあたり 100kg/m程度に低減した場合に必要な構造を 想定し,設計のための資料を得るためにガラス(GF),ビニロン(VF),及びアラミド(A F)の3種類の繊維補強コンクリートを用いた模擬防音壁の載荷試験を行ったので報告するもの である。

2.実験の概要

2.1 供試体

本研究では、表-1に示す3種類の繊維を用いて表-2に示す配合により防音壁の模擬供試体 を作製した. また、これと同時に引張試験用供試体及び曲げ試験用供試体を作製した. それ ぞれの供試体の形状を図-1に示す. 模擬供試体には、径 5.5mmのステンレス丸鋼を破壊後の じん性能を得るために同図に示すように配置した.

使用した繊維は全て短繊維であり、GF及びVFについては約25mmの長さのものを、又、AF については 6mmの長さのものを用いた. 混入率は文献 [2]等を参考にし、フロー値が概ね140~ 160程度となるように定めた.

繊維の種類	記号	長さ	単繊維径	引張強度	ヤング係数	繊維のタイプ
ガラス繊維	GF	25 mm	13.5 <i>µ</i>	130 kg/mm ²	7,500 km/mm²	チョッフ゜ト゛ストラント゛
ビニロン繊維	VF	24 📖	3507``:~#	93 kg/mm²	3,100 km/mm²	ŧJフィラメントタイプ
アラミド繊維	AF	6 mm	12.0 µ	310 kg/mm²	7,100 km/mm²	£ョッフ°ドタイフ°

表-1 使用した繊維の種類

56 ¥7	WIC	5.40	繊 維	単	i (立 1	lt (k	g/m³)	使用
惶利	(X)	570	推入率 (%/vi)	水	txx1	細骨材	繊 維	混和剤	セメント
GFRC	34	0.9	2.0	320	940	837	53.0	6.0	GRCセメント
VFRC	37	1.0	2.8	333	901	901	35.8	-	普通セメント
AFRC	50	0.7	1.4	488	896	627	19.7	4.5	普通セメント

表-2 繊維コンクリートの配合

供試体の種類を表-3に示す.

供試体の製作はブレミックス法により成形を行い, 50次のミキサーにより 5分間練り混ぜた後, 鋼製の 型わくに流し込んだ. 初期養生は,20°c×4時 間の前置を行った後,GFRCは60°c×12時間, VFRC及びAFRCは60°c×4時間の蒸気養生 を行った.引張及び曲げ試験用供試体は,長さ50cm, 幅50cm,厚さ1cmの大形板よりそれぞれ3体ずつ切 り出したものである. 3種類の供試体とも練り混 ぜ,及び成形方法はJISR 5201に準じている. 2.2 実験および測定方法

引張試験は文献[3]による方法,また曲げ試験は, 文献[4]による方法に準じて50 t アムスラー載荷装 置を用いて行った. 曲げ強度試験は,3点載荷方 式により行い支点間距離は20cmであった.

模擬供試体は、図-2に示すように供試体下端を H型鋼にボルトで締結し、各供試体についてそれぞ れ1体ずつ正方向と負方向から10tジャッキを用い て供試体頂部に水平載荷を行った。載荷荷重は、 2tロードセルで測定した。なお、頂部には供試 体の凸部に均一に荷重が加わるようにパッキンを介 している。載荷方法は400kgまで載荷した後、除 荷・載荷を3回繰り返し、次に最大荷重まで載荷を している。

表-3 供試体の種類

種類	模擬供試体	載荷方向	引張試験供試体	曲げ試験供試体
GFRC	SG — 1	正方向	TG-1 a,b,c	BG-1 a,b,c
	SG — 2	負方向	TG-2 a,b,c	BG-2 a,b,c
VFRC	SV - 1	正方向	TV-1 a,b,c	BV-1 a,b,c
	SV - 2	負方向	TV-2 a,b,c	BV-2 a,b,c
AFRC	SA - 1	正方向	TA-1 a,b,c	BA-1 a,b,c
	SA - 2	負方向	TA-2 a,b,c	BA-2 a,b,c

図-2 模擬供試体の載荷方法

供試体種類	載荷方向	最大耐力 (kgf)	頂部変位 (mm)	破壊 パターン	供試体種類	平均引張強度 (kgf/em ²)	供試体 種類	平均曲げ強度 (kgf/cm ²)
SG - 1	正方向	469	24.0	せん断	TG-1	16.4(0.0013)	BG-1	72.8
SG - 2	負方向	766	37.1	せん断	TG-2	41.5(0.0032)	BG-2	130.0
SV-1	正方向	699	36.8	せん断	TV-1	40.3(0.0043)	BV-1	121.0
SV-2	負方向	803	47.6	曲 げ	TV-2	30.7(0.0033)	BV-2	101.0
SA - 1	正方向	439	34.3	せん断	TA-1	20.6(0.0007)	BA-1	82.0
SA - 2	負方向	633	48.2	曲 げ	TA-2	25.7(0.0008)	BA-2	101.0

表一4 試験結果概要

頂部変位は、最大耐力時の値

()の数字は、繊維引張強度に対する比率

図-3 破壊時のひびわれパターン

測定は,頂部及び中間部水平変位,コンクリート 表面ひずみ,及び引張側部材下端のひびわれ幅につ いて着目した.

3.実験結果及び考察

各供試体の実験結果の概要を表-4に示す。 引 張及び曲げ試験の結果はそれぞれの供試体種類ごと の平均値を示した。 GFRCについては、1体目 と2体目の供試体間に強度のばらつきを生じた。

一方, VFRC及びAFRCにおいては,多少のば らつきはあったが,ほぼ一様の強度が得られた.

図-4 各模擬供試体の実験終了時 のひびわれ状態

模擬供試体については、ひびわれの発生の状況から大きく分けて図-3(a)に示すように供 試体の基礎の部分の定着ボルトの周囲にひびわれが発生して破壊に至るせん断破壊型と同図(b) に示すような壁及び凸部材の下端にひびわれが発生して破壊に至る曲げ破壊型の2種類の破壊性

状に分類することでき,各 供試体において観察された 破壊パターンは,表-4に 示すとおりである. 図-4に各供試体の実験終了時 のひびわれ状態を示す. GFRCにおいては,負方 向載荷の場合に壁底部に水 平なひびわれが生じたが, 最終的には定着ボルトの周

りにせん断ひびわれが生じて破壊に至り、正・負両方向ともせん断破壊型となった。 VFRC 及びAFRCでは、正方向載荷においては、せん断破壊型となり、負方向載荷の場合は曲げ破壊 型となり、載荷方向の違いによる破壊パターンの差が生じた。

次に、各供試体の正・負載荷方向別の荷重ー頂部変位曲線を図-5に示す。

正方向載荷においては、VFRCが最大の耐力を示し、GFRC及びAFRCの耐力はVFR Cの 2/3程度の耐力となった. 最大荷重後の耐力低下は、GFRCの場合やや大きいが、VF RC及びAFRCについては、非常に緩やかであった. また、最大耐力時頂部変位の2倍以上 の変形に達しても残存耐力が認められ、ステンレス鋼棒による補強効果であると考えられる.

一方,負方向載荷においては、3種類の供試体とも一様にそれぞれの正方向載荷の供試体より 大きな耐力を有し,最大荷重後の耐力低下も非常に緩やかであった. また,正方向載荷の場合 と同様に残存耐力が認められた.

正・負載荷両方向の使用繊維の差異に着目すると、VFRCについては、双方向とも大きな耐力を有しており耐力の低下も緩やかであった。 GFRCは、正方向の供試体の場合、引張・曲げ強度が低いためか若干低い耐力となった。 また、最大荷重後の挙動はじん性に富んだものであったが耐力低下は他の繊維に比して急であった。 さらに、AFRCについては、最大荷重までの剛性が他の繊維による供試体よりも小さいものとなった。 これは、繊維長の影響と考えられるが、今後さらに検討が必要である。 一方、最大荷重後の耐力低下は、正・負双方向とも3 繊維中一番緩やかであった。

4.まとめ

ガラス繊維(GF),ビニロン繊維(VF),及びアラミド繊維(AF)を用いた図-1に示 す軽量防音壁の模擬供試体の試験により得られた主な結果は,以下のとおりである。

(1) 載荷方向が正方向の場合,使用繊維の種類に関係なく負方向に比べて一様に耐力の低下が 認められ,防音壁の設計については正方向側が引張となる場合で検討しなければならないと考え られる.

(2) 載荷方向が正方向の場合,使用繊維により各供試体の耐力には差異を生じたが,破壊パタ ーンはすべて基礎部分のせん断型の破壊となった。しかしながら,最大耐力後の挙動はじん性 に富むものであった。

(3) 載荷方向が負方向の場合,使用繊維の違いによる最大耐力及び荷重 – 変位曲線の大きな差 異は見られないようである.

以上,本試験によって得られた結果を述べたが,載荷方向,使用繊維及び供試体の引張部と基礎 部の形状と破壊パターンの違いについてさらに検討してゆきたいと考えている.

<豁篩>

本試験を実施するにあたり、御協力を頂いた小沢コンクリート工業株式会社の方々に感謝致し ます.

参考文献

[1]日本音響材料協会編:騒音・振動対策ハンドブック,技報堂

[2] 秋浜繁幸, 末永龍夫, 中川裕幸, 鈴木清孝: CFRCおよびAFRCの力学的性質, セメ

ント・コンクリート, No.467,1986.1

[3] 平居孝之,友沢史紀,秋浜繁幸,石井養朗:GRCの引張試験における載荷方法と試験体 寸法,第5回コンクリート工学年次講演会講演論文集,1983

[4] 友沢史紀, 菅原進一, 三島清敬, 一家惟後: GRCの曲げ試験方法に関する研究, 第5回 コンクリート工学年次講演会講演論文集, 1983

- 138 -