論 文

[2044] 円形多方向 X 形配筋柱の耐力と靱性

正会員	0	中川	裕史	(大阪工業大学大学院)
正会員		福嶋	孝之	(長谷川工務店技術研究所)
正会員		南	宏一	(大阪工業大学工学部)
正会員		若林	實	(日本建築総合試験所)

1. はじめに

鉄筋コンクリート造建物の高層化を図るために、構造設計上特に、留意すべき点は、高圧縮力 と高せん断力を受ける低層部の柱の耐震性能をいかにして図るかという事である。優れた性能を 与える手法として、種々の構造形式を持つ柱の開発が試みられているが[1]、筆者らは、高圧 縮力に対して優れた性能を持つ円形スパイラル補強筋を有する円形断面柱、更に、高せん断力に 対して優れた性能を持つX形配筋柱を組み合わせた「円形多方向X形配筋柱」を考案した[2]。 本論は、この考案した円形多方向X形配筋柱の中心圧縮および、曲げ・せん断に対する力学的特 性を実験的に検討し、この柱の持つ高圧縮力、高せん断力に対する性能を考察するものである。 2. 円形多方向X形配筋柱の構造システム

従来の同一円周上に平行主筋を配置した円形配筋柱と異なり、主筋を筋かい状に配筋し多方向 からの外力に抵抗できるように、2本1組のX形主筋を一定の規則性を持たせて複数個配置する。 図-1に本実験に採用した多方向X形配筋の配筋例を、更にその配筋模式図を示す。この配筋法は、

時計回りおよび反時計回りにねじれたつづ み状を呈する鉄筋群によって、X形配筋を 構成するものでさらに、同一円周上あるい は、それぞれの径が異なった円周上に配置 するものである。スパイラル補強筋として、 平行主筋の外側に配置する事、更に、つづ み状を呈するX形主筋群を取り巻くように、 らせん状に配置することが本システムの特 徴である。写真-1にらせん状のスパイラル 補強筋を用いた試験体配筋状態を示す。

P:平行主筋

上側プレート

図-2 試験体製作手順

3. 試験体製作手順

下側ブレート

この円形多方向X形配筋柱の製作方法を、図-2の試験体製作手順に基づいて説明する。

【1】鉄筋を固定するプレートに対応する番号をふる。【2】内側のプレートに全ての鉄筋を通す。 【3】外側に配置するスパイラル補強筋に配置した鉄筋を通し、手繰り寄せておく。【4】内側に くるX形主筋を順番に配置し、次に外側にくるX形主筋を配置する。 【5】最後に平行主筋を配 置し、全ての鉄筋を配置し終えたところで、手繰り寄せておいたスパイラル補強筋を均等に配置 していく。

4. 中心圧縮実験

この円形多方向X形配筋柱が従来の円形平行配筋柱の持つ中心圧縮破壊に対する性能と同等以上の性能を持つものかを検討するためにまず、中心圧縮実験を計画した。

4-1 実験計画

表-1に試験体一覧を示す。図-3に試験体寸法および配筋詳細を示す。試験体は25~30階程度の 高層鉄筋コンクリート造建物の低層部の柱部材を想定した、1/4のスケールの短柱6体である。実

験変数は、主筋の配筋方法とスパイラル補強 筋量であり、全主筋を平行に配筋したもの(PSタイプ)、これに対して2章で述べた新 しく考案された多方向X形配筋で、外側のみ にスパイラル補強筋を配したもの(XSタイ ブ)、更に、内側の多方向X形主筋に沿って らせん状にスパイラル補強筋を配したもの(XDタイプ)、の3種類である。試験体断面 は直径25cmの円形断面で、試験区間長さは75 B「 cmである。主筋は18-D10(主筋比2.88%)とし、 平行配筋とX形配筋の併用のものは、全主筋 量の 2/3をX形主筋とした。スパイラル補強 筋は 4.5 ゆを使用した。鉄筋の引張降伏応力 度は、4.50は4139kgf/cm²、D10は 3823kgf/ cm²である。載荷方法は 200tアムスラー型万 能試験機による一方向繰り返し中心圧縮載荷 とし、耐力が最大耐力の 50%以下になるまで

載荷した。 圧縮耐力が
100tに達するまでは荷重
200-P(tf)
制御としそれ以降は、軸
方向歪を基にして変位制
150 - (150)
御とした。測定方法は変
位計を4本取付け、ボル
100 - (150)
100 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 - (150)
60 -

図-3 試験体寸法および配筋詳細

- 240 -

C C YFc:コンクリート圧縮強度 Ag:柱のかぶり厚部分の断面積 Acl:コア1部分の断面積 Ac2:コア2部分の断面積 S:スパイラル補強筋間隔 D:スパイラル補強筋の外法直径 As:主筋の全断面積 σy:主筋の降伏応力度 Aw:スパイラル補強筋の断面積 fw:スパイラル補強筋の降伏応力度

(1)、(2)式における⊿Fc1、⊿Fc2は外側及び内側のスパイラル補強筋の拘束効果による増加量
 であり[2] [3]、拘束効果を無視した場合は、⊿Fc1=⊿Fc2=0とする。そのときの耐力Puoは、
 (3)式で与えられる。

Puo=0.85Fc \cdot Ag+ σ y \cdot As (3)(1)より得られた計算値と実験値の比 較を、図-5に示す。(1)式に対する実 験値は 0.94~0.99倍で、よく対応し ている。 図~6に各試験体のxPuo、 pPuoに達するときの歪を ε1 (O印) 最大耐力後、耐力が低下し Puoに達 したときの歪を ε2(●印)と、ε2と $\varepsilon 1$ の差 $\Delta \varepsilon$ (= $\varepsilon 2$ - $\varepsilon 1$)をそれぞれ 示す。 スパイラル補強筋比が大きい 程、 最大耐力後の耐力低下が小さく、 同スパイラル補強筋比では、 X形配 筋の方が耐力低下が小さいことがいえ る。体積比ρが大きいほどΔεは大き くなり靱性に富み、同じ体積比ではX 形配筋の方が靱性に富むことが分かる。

5.曲げせん断実験

高軸力下における多方向X形配筋柱の曲げ・せん 断に対する耐力と変形能力および、それに対するス パイラル補強筋量の影響を検討するために曲げ・せ ん断実験を計画した。

5-1 実験計画

表-2に試験体一覧を示す。図-7に試験体寸法およ 配筋詳細を示す。 試験体は、1/4のスケールの短

表-2 試験体一覧

試験体名	Pw(%)	X(cm)	ρ(%)	軸力比
PS103	0.512	2.5	0.96	0.3
XS103	0.512	2.5	0.96	
XD123	0.768	2.5(5.0)	1.20	
PS105	0.512	2.5	0.96	0.5
XS105	0.512	2.5	0.96	
XD125	0.768	2.5(5.0)	1.20	

び配筋詳細を示す。 試験体は、1/4のスケールの短 №: スパイラル補強筋出 X: スパイラル補強筋間隔 ρ: 体積比 柱6体である。試験体断面は直径 25cmの円形断面で、試験区間長さは 50cmである。配筋方法は中 心圧縮実験と同様であり作用軸力比は、0.3と0.5の 2種類である。 実験装置としては建研式と同 一の機構を持つものを使用し、軸力比0.3、0.5の一定軸力を柱負荷させ、 2サイクル変位制御に よる正負漸増繰り返しせん断載荷を行った。なお、コンクリートの圧縮強度は Fc=244kgf/cm²で、 鉄筋の引張降伏応力度は、中心圧縮実験のものと同一である。

5-2 実験結果

各試験体の最終破壊状況を写真-2に示す。平行配筋柱は、最大耐力時で対角線せん断ひび割れ を生じ、履歴過程でそのひび割れ幅が広がり、耐力低下の要因となっていると考えられる。更に、 最大耐力付近で、柱頭、柱脚部のコンクリートの圧壊そして平行主筋に沿う付着割裂ひび割れを

生じている。多方向X形配筋柱では、平行配筋柱で生じた ような対角線せん断ひび割れよりむしろ、X形主筋に沿う ひび割れが最大耐力時で生じている。同時に、平行主筋に 沿う付着割裂ひび割れも生じている。最大耐力以後、その ひび割れが成長するが、平行配筋柱ほどの著しい破壊性状 を示さない。 図-8に、各試験体の荷重-変形曲線を示す。 縦軸はせん断力Q(tf)、横軸は相対部材角R(%rad.)である。 図中の点線は転倒モーメントによる影響を、一点鎖線は円 形断面として解析した終局曲げ耐力 Qfu(tf)、実線は円形 断面を等価な正方形断面として略算的に解析した終局せん

図-8 各試験体の荷重-変形曲線

断耐力Qsu(tf)を示す。図中の番号は、正荷重時における初期ひび割れであり、1;曲げひび割れ、 2;斜張力ひび割れ、3;平行主筋に沿う付着割裂ひび割れ、4;X形主筋に沿うひび割れ、5;スパイ ラル補強筋の破断、を示す。平行配筋柱の履歴曲線は、R=1.0(%rad.)まで紡錘形を保っているが、 最大耐力以後は耐力低下が著しくかつ、エネルギー消費能力の小さい逆S字形になっている。そ れに対して、XS103、XS105は平行配筋柱と比べ、全変位振幅にわたってエネルギー消費能力の大 きな紡錘形を示している。更にXD123、XD125は先の2体と比べて、より安定した履歴性能を示し、 最大耐力以後の下り勾配は、同軸力比中ではもっとも緩やかで多方向X形配筋を用いることによ って、履歴性状を改善できることがわかる。

5-3 エネルギー消費能力

本実験の履歴曲線から得られた各試験体の第 1サイクル 毎のエネルギー消費量 Uk(tf・cm)を比較したものを図-9に 示す。 横軸は相対部材角 R(%rad.)を示す。最大耐力に達 するまでは、エネルギー消費量にあまり違いは見られない。 しかし、最大耐力以後、多方向X形配筋柱では、変位振幅 の漸増にともないエネルギー消費量が急激に増加している。 またXSとXDとを比較した場合、若干ではあるが、XDの方が エネルギー消費量が大きい事が認められる。

5-4 耐力および靱性評価

耐力評価の指標として、図-10 に終局せん断耐力 Qsu (■ 印)、 終局曲げ耐力 Qfu(□ 印)の計算 値と実験値(〇:正荷重、●:負荷 重)との比較を示す。終局曲げ耐 力の算定で、スパイラル補強筋の 拘束効果を無視してコンクリート の終局時の圧縮応力度をFcとして 解析している。一方、終局せん断 耐力は [4] に示されている累加 強度理論から求められている。せ ん断耐力より曲げ耐力に近い値と なっているが、本計算では、スパ

40r Uk(tf·cm)

20

OPSID

R(%rad.)

イラル補強筋の拘束効果を考慮していないので必ずしも、曲げ破壊したものとは断定できない。 図-11に靱性評価を行った結果の一例を示す。正載荷時において、終局せん断耐力Qsuに達する第 一交点の部材角をR1(〇印)、第二交点の部材角をR2(●印)としR2とR1の差 ⊿R(=R2-R1)を靱性評 価のパラメータとして選ぶ。いずれの軸力比においても、スパイラル補強筋量の多く配し、かつ、 X形主筋を配した柱のほうが靱性に優れていることがわかる。

5-5 X形主筋の負担せん断力

図-12に多方向X形配筋柱のX形主筋で構成されるトラスモデルを示す。 ここでR《θ、φとする。図-12より、多方向X形配筋柱の弾性域における負担せん断力dQuと相対部材角Rの関係は、次 式で与えられる。 dQu=∑dQui=2EA∑(Rsin²θ;•cosθ;•cos²φ;) (4) ここに E:X形主筋の弾性係数 A:X形主筋の断面積

また、全X形主筋が引張および圧縮降伏した場合のX形主筋の負担せん断力dQyuは、次式のよう に示される。

X形主筋以外による負担せん断力

図-13にXS103、XD123について、X形主筋の歪より求めたX形主筋の負担せん断力dQuおよびそ れ以外の負担せん断力pQ(=Q-dQ)と作用せん断力Quの関係を示す。 最大耐力時に、X形主筋の負 担せん断力は、ほぼ最大に達しており、以後もX形主筋以外の負担せん断力は低下するのに対し て、X形主筋の負担せん断力は低下していないことが認められる。従って、多方向X形主筋の終 局せん断耐力は(5)式で求められる事が分かった。

6. 結論

中心圧縮実験によって、円形多方向X形配筋柱の中心圧縮に対する性能は、従来の円形平行配 筋柱のものと同等以上であり、中心圧縮に対してもX形主筋は有効に作用することが明かとなっ た。また、スパイラル補強筋量は圧縮耐力および靱性に強い影響を与え、同じスパイラル補強筋 量では、X形配筋の方が靱性に富むことが確認された。

一方、曲げ・せん断実験に関しては、従来の円形平行配筋柱の主筋の一部を多方向なX形配筋 にすることで、履歴性状は、極めて安定した性状を示し、高圧縮、高せん断に対してこの円形多 方向X形配筋柱は、優れた性能を持っていることが確認された。

7.参考文献

- [1] 青山博之:高層鉄筋コンクリート建物の現状と今後の問題点、コンクリート工学、Vol.24、 No.5、May 1986、pp.4-13.
- [2] 中川裕史、福嶋孝之、南宏一、若林實:中心圧縮を受ける円形X形配筋柱の弾塑性挙動(その1) (その2)、日本建築学会大会学術講演梗概集(近畿)、1987年10月pp.541-544.
- [3] R.Park and T.Paulay: Reinforced Concrete Structures. A Wiley-Interscience Publication, 1974.
- [4] 南宏一: X 形配筋柱の弾塑性性状に関する基礎的研究、京都大学学位請求論文、1984年12月