論 文

「2112】 60キロ級の高張力鋼を用いた SRC 柱のせん断耐力

正会員 〇津田和征(大阪工業大学大学院) 正会員 益尾 潔(日本建築総合試験所) 正会員 南 宏一(大阪工業大学工学部)

1. はじめに

建築構造物の高層化、大型化に伴う構造物の自重増加は、下層の柱に大きな圧縮力とせん断力 が作用するため、耐震工学上、懸念される点の一つである。本研究は、高張力鋼をSRC構造に 導入することにより部材断面も小さく出来き、その問題を解決できるものと考え、その適用性に ついての基礎資料を得る目的で行ったものである。本論文では、せん断破壊を生じるSRC柱の 鋼材に60キロ級の高張力鋼を用いた場合、鉄骨部分と鉄筋コンクリート部分とが、それぞれ十分 にその特性を発揮できるかどうかということに注目してせん断実験を行い、その破壊性状を明ら かにするとともに鋼材の材質および作用軸力比が終局せん断耐力に及ぼす影響について考察する ものである。さらに鉄骨鉄筋コンクリート構造計算規準・同解説(SRC規準という)[1]で 提案されている終局せん断耐力式の適用性についてもあわせて検討する。

2.実験概要

2.1実験計画および試験体

表-1に実験系列および実験変数を示す。実験変 数として作用軸力比と鋼材の材質の2種類を選択し た。作用軸力比は、0,0.2Nu,0.4Nu (Nu=Ac+Fc+Aw+ wov+Af•fov+Ar•rov:中心圧縮耐力)の3種類で ある。鋼材は、47,68,69 および89の4種類である。 なお、鋼材47は引張強度40Kgf/mm²で降伏比 Y (= 降伏応力度/引張強度)が、0.7 であることを意味 し68,69,89についても同様である。これらを組合せ た計8体の試験体を計画した。なお、作用軸力比が 0 を シリーズ1、作用軸力比が0.2 N u を シリーズ2、作用軸力比が0.4Nuをシリーズ3とした。 図-1に試験体の形状寸法および断面構成を示す。 表-2に使用材料の力学的性質を示す。鉄骨は、組 -立H形鋼(H-200×100×6×9)で強軸に配した。主 筋は12-D16で引張鉄筋比 Pt=1.4(%)とした。帯筋は 90°,135°フックをもつし字形帯筋(D6)で、帯筋比 Pw=0.43(%) とした。また、試験体断面 (B×D) は 300mm×300mm、柱長さ(h) 900mmで各試験体とも断 面、形状寸法は共通である。なお、柱長比 (h/D) は3で、せん断破壊性状が卓越するように計画した。

試験体名	シリーズ	鋼材	軸力比 (N/Nu)	軸力 (tf)
6-1	1	47	0	0
6-2		69	0	0
6-3	2	47	0.2	82.1
6-4		68	0.2	99.6
6-5		69	0.2	105.6
6-6		89	0.2	122.0
6-7	3	47	0.4	178.6
6-8		69	0.4	198.5

2.2 載荷および測定方法

表-2 使用材料の力学的性質

降伏応力度

(Kgf/cm²)

wσy

(89) 8150 8590

roy

3887

3490

(47) 3020

(68) 5030

(69) 6110

fσy

2780

4600

5580

引張強度 (Kgf/cm²)

wσu

4220

5950

6660

fσu

4160

5660

6120

8620 9980

rau

5785

5304

コンクリート強度

(Kgf/cm²)

294

259

259

294

294

299

299

259

載荷は一定軸力下で逆対称変形の正負繰返し加 大家体名 力を行う方法によった。変位計により部材の水平 および鉛直方向変位を測定し、かつ、W.S.G によ 6-1 6-2 り鉄骨のウェブ部、フランジ部、主筋および帯筋 6-3 6-4 のひずみ度を測定した。また、変位の制御は柱頭 6-5 6-6 の横たわみδから求められる相対部材角 R (= 6-7 6-8 8-7 6-8

ゲージ貼付位置の例は、図-3に示されている。 3.実験結果 νσy,νσu:ウェブの降伏応力度および引張強度 fσy,fσu:フランジの降伏応力度および引張強度 rσy,rσu:主筋、帯筋の降伏応力度および引張強度 (D16)は主筋を、(D6)は帯筋をそれぞれ表す。

(D16)

(D6)

3.1 ひび割れおよび破壊性状

【シリーズ1】作用軸力比が零のシリーズでは、6-1 (鋼材47),6-2 (鋼材69)ともに、R=0.00 5 rad.程度の変形量までに曲げひび割れおよび材端部に斜張力ひび割れが発生した。その後、斜 張力ひび割れが主筋の全長に沿って進行し、R=0.01rad.で柱端に圧壊が生じた。最大耐力に達し た後、主筋に沿う付着割裂によるかぶりコンクリートの剝落が顕著となり、帯筋フック部分の抜 け出しが認められるとともに、両材端部のコアコンクリートの斜めひび割れの進展が認められた。 【シリーズ2】作用軸力比が0.2Nuのシリーズでは、各試験体とも最初に曲げひび割れ、お よび材端部に斜張力ひび割れが発生した。最大耐力時には、斜張力ひび割れが主筋の全長に沿っ て進行し、部分的に帯筋フック部分の抜け出しが認められた。その後、帯筋フックの抜け出しに 伴い帯筋の横拘束が低下し主筋の局部座屈が発生し、両材端部のコアコンクリートの損傷も顕著 となった。特に 6-6 (鋼材89)ではコアコンクリートの損傷が著しく、鉄骨のフランジに局部座 屈が認められた。

【シリーズ3】作用軸力比が0.4Nuのシリーズでは、6-7(鋼材47)、6-8(鋼材69)ともに、 R=0.005rad.の変形量までに、曲げひび割れよりも先に主筋に沿う縦ひび割れが認められた。そ の後、斜張力ひび割れが進行し、最大耐力以後、主筋に沿う付着割裂によるかぶりコンクリート の剝落が顕著となった。さらに変形が進むとコアコンクリートの損傷が顕著となり、帯筋フック の抜け出しにより横拘束が低下し主筋および鉄骨フランジに局部座屈が生じ、最終的に両試験体 とも軸力を保持することができなくなり破壊に至った。

3.2 荷重変形特性

図-2に各試験体の履歴曲線を示す。縦軸は水平荷重Q、横軸は相対部材角Rを示す。また図中の一点鎖線、二点鎖線は、それぞれ拡張累加強度理論[2],[3]により求めた終局曲げ耐力(Qfu),終局せん断耐力(Qsu)を表し、また、破線はP-△効果を表す。作用軸力比が0,0.2Nuの場合、大変形に至っても軸力の保持が可能であったが、作用軸力比が0.4Nuの場合、 R=0.02~0.03rad.で軸力の保持が不可能になった。なお、鋼材の強度に関わらずほぼ紡錘形の履歴曲線を示している。また、鋼材の強度増加に伴い最大耐力が増加するとともに、最大耐力時の部材角は増加する。これは、鋼材の強度増加に伴い鋼材の降伏ひずみが増加することに起因するものと考えられる。すなわち、3.4節で述べるように各試験体ともSRC柱としての最大耐力時と 鉄骨フランジの降伏時とがほぼ一致している。SRC柱としての最大耐力を発揮するときの柱部材角Rは、鋼材の材質によって異なり、軸力が作用した場合には、鋼材47,68,69ではR=0.010~0.015(rad.)、鋼材89ではR=0.025(rad.)となることが特徴的である。

3.3 ひずみ推移状況

図-3に帯筋および鉄骨のウェブ部、フランジ部のひずみ推移状況を示す。なお比較のため荷 重変形曲線の包絡線も併示した。縦軸は各構成要素のひずみ ε または γ 、横軸は相対部材角Rを 表す。また図中の \bigcirc 、▲は、それぞれ各試験体の最大耐力時の部材角を表し、一点鎖線は各構 成要素の降伏ひずみ ε y または γ yを表す。なお、降伏ひずみは ε y= σ y/E, γ y= τ y/G (τ y= σ y/ $\sqrt{3}$, σ y:降伏応力度 E:ヤング係数 G:せん断弾性係数)として求めた。

【 帯筋 】 作用軸力比に関わらず、各試験体とも最大耐力時には、柱中央部あるいは、柱材端部 から20cm程度に配した帯筋は、ほぼ降伏ひずみに達し、それ以後は、ひずみが減少している。こ れは、帯筋が最大耐力時までは効果を有するが、その後、かぶりコンクリートが剝落し、さらに 帯筋フック部の抜け出しに伴い帯筋の横拘束が低下したことを示している。

【 鉄骨ウェブ 】 各試験体とも最大耐力時には、せん断降伏していないが、それ以後せん断降伏 ひずみに達する。すなわち、最大耐力以後、帯筋の横拘束が低下するとともにコアコンクリート の損傷したことに伴い鉄骨の負担せん断力が増大したことに起因している。

【 鉄骨フランジ 】 柱材端部でのフランジのひずみは、各試験体とも最大耐力時にほぼ降伏ひず みに達しており、鉄骨は、最大耐力時に曲げ耐力を発揮している。

3.4 鉄筋コンクリート部分の負担せん断力

図-4に一例として作用軸力比が 0.2で、鋼材47,69,89を用いた場合についての鉄筋コンクリート部分の負担せん断力 RcQ (=SRcQu-SQ)および鉄骨部分の負担せん断力SQと部材角の関

係を示す。縦軸は負担せん断力の無次元化量を、横軸は相対部材角Rをそれぞれ表す。図中の∛ はSRC柱としての最大耐力時の部材角を表し、一点鎖線は後述のSRC規準より求めた鉄筋コ ンクリート部分の理論せん断耐力rQsuを表す。なお、sRcQuは全せん断力を、sQは鉄骨フラン ジ端部のひずみ度から求めた鉄骨部分の負担せん断力をそれぞれ表す。鉄骨の負担せん断力は、 鋼材の材質に関わらずSRC柱としての最大耐力時にほぼ各々の最大耐力に達している。一方、 鉄筋コンクリート部分の負担せん断力(〇一〇)が最大となる変形量は、鋼材47ではSRC柱と しての最大耐力時の変形量と一致しているが、鋼材69,89では一致していない。また、SRC柱

としての最大耐力時の鉄筋コンクリート部分の負担せん断力(●印で表す)とSRC規準より求 めた理論耐力(一点鎖線)を比較するとその耐力差は、鋼材の強度増加に伴い小さくなり、理論 耐力に近づく傾向にある。図-5に各シリーズの鉄筋コンクリート部分の負担せん断力 (RcQ) と部材角との関係を示す。図中の∀は、SRC柱としての最大耐力時の部材角を表す。各シリー ズにおいて、鉄筋コンクリート部分の最大負担せん断力は、作用軸力比、鋼材の材質のいかんに 関わらずほぼ(0.14~0.15) bDFcの一定値をとり、かつ、その時の変形量は、ほぼ R=0.01 rad. になっているが、この値は60キロ級以上の鋼材を用いた場合には、SRC柱としての最大耐力時 の変形量とは一致していないことが特徴である。また、負担せん断力の劣化状況も作用軸力比、 鋼材の材質のいかんに関わらず同様の傾向を示していることが認められる。表-3に鉄筋コンク リート部分の最大負担せん断力(Rcgmax)とSRC柱としての最大耐力時の負担せん断力 (Rcg)と の関係を示す。なお、同表中の値は、無次元化量で表している。SRC柱としての最大耐力時に おける鉄筋コンクリート部分の負担せん断力は、鋼材47,68,69を用いた場合には、ほぼ各々の最 大負担せん断力に一致しているか、あるいは90%程度の低下が認められるが、鋼材89を用いた場

合には、最大負担せん断力の約70%程度まで低下 表-3 鉄筋コンクリート部分の負担せん断力 している。したがって、鋼材47を用いた場合には せん断強度src Quは、鉄筋コンクリート部分の最 大負担せん断力 RC Qmaxと鉄骨部分の負担せん断 力 sQの累加によってほぼ評価できるものと考え られるが、鋼材 69,89を用いた場合には、単純な 累加では評価できず、後述するような若干の補正 が必要である。

4.終局せん断耐力の検討

試験体名	最大 負担せん断力	最大耐力時の 負担せん断力	RCQ
(材種)	RCQMAX	RCQ	RCQMAX
6-1(47)	0.136	0.124	0.91
6-2(69)	0.134	0.134	1.00
6-3(47)	0.152	0.152	1.00
6-4(68)	0.143	0.140	0.98
6-5(69)	0.136	0.125	0.92
6-6(89)	0.153	0.107	0.70
6-7(47)	0.148	0.148	1.00
6-8(69)	0.154	0.139	0.90

本節では、従来の拡張累加強度理論[3]による終局せん断耐力式およびSRC規準[1]で提 案されている終局せん断耐力式の検討を行う。表-4に拡張累加強度理論およびSRC規準によ る理論値と実験値との比較を示す。なお、表中のQsuは拡張累加強度理論より求めた終局せん断 耐力を、Qu はSRC規準より求めた終局せん断耐力をそれぞれ表す。拡張累加強度理論による 終局せん断耐力と実験値との比(実験値/理論値)は、鋼材89を用いた試験体 6-6を除く試験体 は、1.0以上の安全側の値を示している。SRC規準による終局せん断耐力と実験値との比は、 各試験体とも、1.0以上の安全側の値を示している。しかしながら、同一軸力比での実験値とS RC規準による理論値との比は、鋼材の強度増加に伴い減少している。このことは、 3.4節で述 べたように鋼材の強度増加に伴いSRC規準における鉄筋コンクリート部分の理論耐力に含まれ

試験体名(鐦種)	実験値(Qme) (tf)	Qsu (tf)	Qme/Qsu	Qu (tf)	Qme/Qu	Qui (tf)	Qme/Qu1	
6-1 (47)	44.9	36.0	1.22	35.7	1.26	35.7	1.26	Qsu:累加強度理論による 終局せん断耐力 Qu:SRC規準による 終局せん断耐力 Qu1:提案式による 終局せん断耐力
6-2 (69)	52.4	51.3	1.02	49.5	1.06	47.2	1.11	
6-3 (47)	48.4	36.6	1.32	37.1	1.30	37.1	1.30	
6-4 (68)	58.5	49.2	1.19	47.0	1.24	44.6	1.31	
6-5 (69)	59.1	54.2	1.09	51.8	1.14	49.4	1.20	
6-6 (89)	68.6	71.3	0.96	66.7	1.03	59.4	1.15	
6-7 (47)	53.4	39.0	1.37	38.1	1.40	38.1	1.40	
6-8 (69)	57.7	51.7	1.12	48.0	1.20	46.0	1.25	

表-4 理論値と実験値との比較

る安全率が減少していることに起因している。したがって、60キロ級の高張力鋼を用いたSR C柱の終局せん断耐力をSRC規準で提案されている終局せん断耐力式で普通鋼を同等の安全率 を与えるためにSRC規準における鉄骨部分および鉄筋コンクリート部分のせん断耐力に補正係 数 φr、φsを乗じた次式を提案する。

$$Qul = \phi r \cdot r Qu + \phi s \cdot s Qu$$

(1)

上式において鉄筋コンクリート部分の最大耐力時の変形量を基準とする場合は、ør=1.0、鉄骨 部分の最大耐力時の変形量を基準とする場合は、øs=1.0とすることが本提案式の特徴である。 本解析では、各試験体ともSRC柱としての最大耐力時の変形量と鉄骨部分の最大耐力時の変形 量とが、ほぼ一致していることより鉄骨部分の補正係数øsは1.0とすると鉄筋コンクリート部分 の補正係数ørとしては、実験結果より鋼材47では1.0、鋼材68,69では 0.9、鋼材89では、0.7と 各々の値が得られる。表-4に示すように提案式による理論耐力と実験値との比は、6040級の高 張力鋼を用いた場合でも普通鋼とほぼ同等の値を示し、同等の安全率を与えている。なお、ここ で示した補正係数の値は、実験結果に基づいて求めたもので、今後さらに検討する必要があるも のと考えられる。

5. 結論

せん断破壊を生じるSRC柱の鋼材に60キロ級の高張力鋼を用いた場合、SRC柱としての最 大耐力時の変形量は、鋼材の強度増加に伴い増加する。鉄骨部分の負担せん断力は、各試験体と もSRC柱としての最大耐力時にほぼ最大耐力に達する。鉄筋コンクリート部分の最大負担せん 断力は、作用軸力比および鋼材の材質に関わらず、ほぼ一定値をとり、その時の変形量は、40キ ロ級の鋼材を用いた場合には、SRC柱としての最大耐力時の変形量とほぼ一致するが、60キロ 級以上の鋼材では、一致しない。したがって、60キロ級の鋼材を用いた場合、普通鋼と同等の安 全率を与えるためには鉄筋コンクリート部分の耐力を若干補正してSRC規準を適用する必要が ある。

6.参考文献

 [1]日本建築学会 「鉄骨鉄筋コンクリート構造計算規準・同解説」 第4版 1987年 6月
[2]社団法人鋼材倶楽部 「SRC構造用H形鋼デザインマニュアル」 第6章 柱の基礎式 1984年11月
[3]岡本浩一、南 宏一、若林 實「SRC柱のせん断強度に関する理論解」 第7回コンクリ ート工学年次講演会論文集 1985年 pp.557-560

【謝辞】 この研究は、(社)鋼材倶楽部「SRC造への高張力鋼適用に関する調査研究委員会」 (委員長、若林 實)の研究の一部として行われたもので、委員各位に熱心な御討議をいただき ました。ここに、記して謝意を表します。