コンクリート工学年次論文報告集, Vol.14, No.1, 1992

論文

[1148] 直達日射を受けるタイル張り壁面の挙動に関する基礎的研究

正会員 松藤 秦典(九州大学建築学科)

正会員〇大久保孝昭(九州大学建築学科)

小山 智幸(九州大学建築学科)

1.序

近年,建築構造物の外壁タイルや仕上げモルタル等,外装仕上げ材の剥落事故が多く報告され, 重大な社会問題となっている.外装仕上げ材の剥離,剥落の原因としては,張り付け工法の選択 ミス,下地不良及び地震・不同沈下等の外的要因並びに熱,乾湿による膨張・収縮及び水分凍結 等の内的要因など,種々の要因が考えられる.外装仕上げ材の剥離,剥落の調査事例によると, 欠陥発生箇所は建物南面が最も多く,次いで,西面,東面の順となっており,建物北面ではほと んど発生していないことが報告されている¹¹.これは,直達日射が外装仕上げ材の劣化に大きく 影響を与えていることを示している.

本研究は,直達日射が外壁面に及ぼす影響を,壁体内部の温度性状,温度ひずみの観点から, 定量的に評価することを目的として行ったものである。本論文では先ず,タイル,張り付けモル タル,下地モルタル及び躯体コンクリートなど,タイル張り壁面を構成する各素材の温度変化に 伴う変形性状を明かにし,更にこれらの各素材が壁面全体の挙動に及ぼす影響を把握することを 目的として実験検討を行った。

2. 実験概要

2.1 試験装置及び試験環境

本研究では、6個のハロゲンライトを配置した人工照射装置²、を用いて、試験体に模擬直達日射を与えた.試験体に与えた直達日射の経時変化を図1に示す.照射量は夏季の直達 日射を想定して1時間当り2.0MJ/m²とし,照射時間を30分か ら8時間までの5段階に変化させて,試験体が直達日射を受 ける時間と試験体の挙動との関係を検討した.

2.2 試験体

タイル張り壁面の試験体を構成する素材を 表1に一括して示す。使用したタイルは2種 類のせっ器質二丁掛タイル(A社製:タイル 短辺方向に蟻足型の裏足付き,B社製:長辺 方向に裏足)及び磁器質二丁掛タイル(A社 製:短辺方向に裏足)とした。なお,表1に おいて,タイルの線膨張係数及び曲げ強度は タイルの裏足を削り落とした試験体で測定し 表1 試験体を構成する素材

試験体種類	線膨脹係数 (x10 ⁻⁶ /°C)	試験体強度 (kgf/cm ²)
A社製せっ器質タイル	6.10	205(曲げ)
A社製磁器質タイル	4.61	223(曲げ)
B社製せっ器質タイル	4.64	200(曲げ)
張り付けモルタル	12.74	
下地(上塗り)もが	10.94	_
下地(下塗り)もメタル	10.83	453 (圧縮)
コンクリート	9.52	225(圧縮)

た値である.コンクリートは呼び強度が210kgf/cm²の普通コンクリート,下地モルタルはメチル セルロース混入のモルタルを用いた.また,タイルの張り付けモルタルとして,C社製の既製調 合モルタルを使用した.いずれ も通常の建築工事において一般 に使用されているものである.

表2に実験に供した試験体を 一括して示す.本論文では先ず, タイル張り壁面を構成する各素 材単体の挙動について検討を 行った(表中,試験体 T1~C). 仕上げタイルは裏足の影響を検 討するため,裏足を削り落とし たタイル試験体についても併せ て実験を行っている(試験体T1 ~T3).張り付け及び下地モル タルは短辺×長辺×厚さが 60x

表2 試験体の一覧

試	跋	体		计路计扫具	試験体形状
仕上げタイル	張付けもりが	下地刊列	3779-1	和限体品口巧	模式図
A社製せっ器質 A社製磁器質 B社製せっ器質	-		-	T1 T2 T3	(裏足無し)
A社製せつ器質 A社製磁器質 B社製せつ器質	-	-	-	T4 T5 T6	[
	0	-	-	M1	
-	-	0	-	M2	
	-	-	0	С	
A社製せっ器質 A社製磁器質 B社製せっ器質	0	-	-	A1 A2 A3	
A社製せっ器質 A社製磁器質 B社製成器質	0	0	-	B1 B2 B3	
A社製せっ器質 A社製磁器質 B社製せっ器質	0	0	0	C1 C2 C3	

225x25mm, コンクリートは 60x225x60mmの形状の試験体とし,ともに打設後気温25℃,湿度70% 気中で養生し,材令が28日以上経過した後実験に供した。また表2に示すように,仕上げタイル の挙動に及ぼす各下地の影響を検討するため,タイル単体にタイル張り壁面を構成する各素材を 順次増加させた試験体を作成し,実験検討を行った(表中,試験体A1~C3)。

2.3 測定項目

各試験環境下における試験体の温度変化は,試験体作成時に予め設置したCC熱電対により,各 素材の両面で測定した.例えば,試験体A1(表2参照)ではタイル表面,タイル裏面と張付けモ ルタルとの層間及び張り付けモルタル裏面の3箇所で測定を行っている.

試験体内部のひずみは、試験体作成時に各層に貼付した3線式電気抵抗線ひずみゲージにより、 試験体の長手方向について測定した。例えば、試験体C1では、タイル表裏面、モルタル表面及び コンクリート表裏面で測定を行っている。弾性係数を乗じることにより直ちに応力に換算できる 真ひずみε+及び試験体の実際の伸縮を表す実ひずみεk は測定された計測ひずみε。からそれ ぞれ(1)式及び(2)式により算定した²⁾。

> $\varepsilon_{t} = \varepsilon_{e} + (\alpha_{s} - \alpha_{s}) \times \Delta T \qquad (1)$ $\varepsilon_{k} = \varepsilon_{t} + \alpha_{s} \times \Delta T \qquad (2)$

ここに, ε。:ひずみの計測値

ει: 試験体応力に換算できる真ひずみ

α。:試験体の線膨張係数

- ε κ : 試験体の実際の伸縮を表す実ひずみ
- △T:基準時刻からの試験体の温度変化

α。:ゲージの見かけの線膨張係数

3.実験結果及び考察

3.1 試験体を構成する各素材の挙動

3.1.1 温度性状

図1に示した繰り返しの直達日射を受けるタイル試験体表面(以下,受光面)の温度変化の例 を図2に示す.同図(a)は試験体T1,同図(b)は試験体T5について示したものである.図中実線 は受光面,一点鎖線はその裏面の値を示す.いずれ の場合も照射時間が長くなるにしたがって温度が上 昇する傾向を示しており,照射8時間では受光面の 温度は70℃程度まで上昇している.図2において, 試験体裏面の温度は受光面に比べて僅かに遅れて立 ち上がり,各照射終了時には受光面より僅かに低い 値まで上昇している.このことは,タイル張り壁面 が直達日射を受けるとき,タイル表面の温度はかな り短時間に下地の張り付けモルタルに伝導すること を示している.

図3に直達日射を受ける張り付けモルタル(M1) 及びコンクリート(C) 試験体温度の経時変化を示 す.本実験に使用した張り付けモルタルの色相が他 の試験体に比べて黒色に近い色であったため,受光 面の温度は照射8時間で80℃を越えた。図には示し ていないが下地モルタルの表面温度はほぼコンクリ ート試験体と同様の温度上昇を示した。また,受光 面から裏面への温度伝導もかなり大きく,張り付け モルタルの裏面は照射後2時間で70℃,厚さ60mmの コンクリート試験体も照射4時間後には温度が60℃ に達している。

3.1.2 ひずみ性状

図4に直達日射を受けるタイル試験体(T4,T5,T6) の実ひずみの経時変化を示す。図中実線は受光面、 一点鎖線はその裏側の実ひずみを表す. 各試験体と も受光面と裏面のひずみの差が大きく、直達日射を 受ける場合タイルに反りを生じるようなひずみが生 じている.試験体T5は日射を受けて生じた伸びが照 射停止後も回復せず,引張り側の残留ひずみが生じ ている。特に試験体裏面の残留ひずみが大きい。比 較のため、図4(b) に示したA社製磁器質タイルの 裏足を削り落とした試験体T2が直達日射を受ける場 合の実ひずみを図5に示した。同図において試験体 には照射後の残留ひずみが見られない.このことは、 照射を受けるタイルの変形には裏足の形状がかなり 影響を与えることを示している。タイルの押出し成 形過程において、裏足部分に過度の圧力が作用し、 タイル表裏の組織の違いが生じることも影響してい ると考えられる.

図6に直達日射を受ける試験体M1, M2及び試験体C

の実ひずみの経時変化を示す。照射により生じる引 張り(伸び側)ひずみは張り付けモルタルが最も大 きく,約1000µに達している.また,同図(a),(b) に示すように照射2時間まではモルタル試験体(M1, M2)には、試験体温度が照射開始直前の値まで低下 しているにも関わらず、照射停止後も残留ひずみが 生じているが、コンクリート試験体にはこの残留ひ ずみは見られない。モルタル試験体の非回復性のひ ずみはモルタルに混入されている樹脂の影響と考え られ、今後更に検討する予定である。ただし、照射 時間が4時間を越えると、図6に示すように照射停 止後は試験開始前に比べて圧縮側のひずみが残る. これは、照射時間が長くなり、試験体が強制的に乾 燥されて収縮ひずみが生じたためである.このこと は4時間以上の照射では、引張り側のひずみが照射 中に減少することからも明かである。以上のことか ら、タイル張り壁面が直達日射を受けるとき、樹脂 を混入した張り付け及び下地モルタルの挙動は壁面 全体の挙動を複雑にすることが分かる.

3.2 各素材が仕上げタイルの挙動に及ぼす影響

3.2.1 温度性状

A社製せっ器質タイルを用いた試験体T4, A1, B1 及びC1が直達日射を受けるとき、タイル部分の温度 変化を図7に示す。同図はタイル下地材料の積層数 がタイルの温度に及ぼす影響を比較したもので、図 中、実線はタイル表面(受光面),一点鎖線は裏面 の温度変化を示したものである。照射2時間までは タイルの最高温度は下地の積層が増えるほど低い値 を示しているが、照射が4時間を越えると逆の傾向 を示す。これは下地が増加して試験体体積が大きく なることによる蓄熱容量の影響である。また、照射 による試験体の温度上昇は下地の積層が増えるほど

時間的に遅れることが図より明らかである。図には 示していないが,他のタイルを用いた試験体も図7 とほぼ同様の傾向を示した。

3.2.2 ひずみ性状

A社製せっ器質タイルを使用した各試験体(T4, A1、B1、C1)が直達日射を受けるときのタイル表裏 の実ひずみを図8に示す。図中、実線はタイル受光 面、一点鎖線はタイル裏面の値を示す。照射による タイルの伸びは、タイル表面は下地が増加しても殆 と変化しないが、タイル裏面の実ひずみは著しく増 大している。これはタイル裏面が直接接する張り付 けモルタルや下地モルタルの伸びによる引張力を受 けているためである。躯体コンクリートを有する試 験体C1(図3(d))のタイル部分に生じるひずみは, 他の試験体に比べて照射が1時間までは値が小さく, 照射が2時間を越えると大きな値を示すようになる. これは、照射時間が短いときは、コンクリート部分 は温度が低いためモルタルやタイルの伸びを拘束し、 照射時間が長くなり温度が上昇するとコンクリート 自身が伸び始め、他材料に対するひずみ拘束が小さ くなるためである。このことは試験体C1のコンクリ -ト部分の実ひずみを示した図9からも明らかであ る、即ち、図9において照射が1時間まではコンク リートの伸びひずみは小さく、特にコンクリート裏 面にはほとんどひずみが生じていない.

また、図8において各照射終了後は、試験体温度 が試験開始時の値まで低下してもタイル裏面にはか なり大きな引張り側の残留ひずみが残っている。特 に通常のタイル張り壁面と同様の断面を有する試験 体C1のタイル部分に生じる実ひずみ及び残留ひずみ も大きくなっている。これは先に示したように張り 付けモルタルの残留ひずみや、タイル自身の変形性 状の影響である。

図10に試験体A1(図8(b))の張り付けモルタル の実ひずみ,図11に試験体B1(図8(b))の下地モ ルタルの実ひずみを示した.いずれもタイル表面が 直達日射を受けることにより,かなり大きなひずみ が生じるていることがわかる.

図12にB社製のせっ器質タイルを使用した試験体 C3の試験結果を示す。同図はほぼ図8(d)と同様の

傾向を示しているが、図8(d) に比べてタイル裏側 の残留ひずみは小さくなっていることが分かる。こ れはA社製のタイル(短辺方向に裏足)とB社製タ イル(長辺方向に裏足)の裏足形状の差によるもの である。

図13に、実験に供した各タイルに生じる最大実ひ ずみと下地積層との関係を一括して示す。同図は試 験体が4時間直達日射を受けたときの、タイル受光 面(実線)及び裏面(一点鎖線)の値を示している。 同図から、タイルに生じる実ひずみはタイル下面の 材料が増えるほど大きくなる傾向を示しており、特 に張り付けモルタル及び下地モルタルの影響が大き いことが分かる。

また,図8に示す各試験体のタイル部分の真ひず みを図14に示した.各試験体が直達日射を受けると きタイルにはかなり大きな応力が生じることが分か る.コンクリート躯体を有する試験体(図14(d)) のタイルに生じる応力が特に大きくなっている.

4.まとめ

本研究は,直達日射を受けるタイル張り壁面の挙 動を定量的に把握することを目的として行ったもの である.本論文では,タイル張り壁面を構成する各 材料がタイルのひずみ性状に及ぼす影響について検 討を行い,以下のような知見を得た.

- ①張り付けモルタルはタイルに比べて線膨張係数が 大きく、直達日射によりタイルよりも大きな伸び が生じるため、タイル裏面に過度のひずみを生じ させ、タイルの残留ひずみを増大させる。
- ②下地モルタルは張り付けモルタル同様、タイルに 生じる実ひずみ及び残留ひずみを増加させる。
- ③躯体コンクリートは試験体が直達日射を受ける時間が短いときにはタイルの実ひずみを低下させ、 照射時間が長くなるとひずみを増加させる。
- ④タイルの裏足形状は,張り付けモルタルとの機械 的付着力に影響し,特に短辺方向の裏足を有する タイルの残留ひずみは大きくなる。

今後大型の試験体により、目地種類、型枠材料の影響等についても検討を行う予定である。 <参考文献> 1)外壁落下事故防止講習会テキスト、建築・設備維持保全推進協会、1990.6

2)日本建築学会九州支部研究報告 第32·1号 1991.3, pp105-108