論 文[2016] 鉛直方向に間隔を有する鉄筋の重ね継手に関する研究

正会員〇渡辺明之(JR東日本東京工事事務所)

1. まえがき

地下連続壁の構造は、1 エレメントごとに施工するという構造形式から連壁の長手方向に連続 性がない。(図-1参照)そこで外力として土圧が作用する時に長手方向の連続性を確保するた めに高剛性の鉛直継手が考案されている。高剛性の継手(今回想定しているのはパイプ継手)を 用いるためには施工上の問題からスライド部が必要であり、その構造について別途検討が必要と なる。スライド部は図-2の断面図を見ると解るように鉛直方向に間隔を有する鉄筋の重ね継手

と同じ構造形式となっている。 今回の「鉛直方向に間 隔を有する鉄筋の重ね継手に関する研究」はそうした 背景の中で地下連続壁の長手方向の連続性の研究の一 つとして鉄筋の重ね継手強度の研究を報告する。

2. 研究の目的

図-1 施工概況

継手の中で重ね継手は溶接継手、機械式継手に比べると施工が簡単で、品質管理が容易である など有利な点が多いが、同時に未解明な部分も多い。

重ね継手のメカニズムを解明するために、重ね継手強度に関する研究は行われてきた。そうし た過去の研究から重ね継手の構造は鉄筋を重ねるだけの単純な構造であるにもかかわらず、その 強度に影響を与える因子はかなり多く、また、それらの因子は複合的に作用することが知られて いる。今研究は、それらの因子の中で重ね継手鉄筋の鉛直方向の間隔という因子について研究す ることを目的とする。

3. 試験概要

試験は連続地下壁の実物に近い構造のモデル(供試体1)と重ね継手の鉛直間隔Sの影響を見るための基本的な構造の簡略モデル(供試体2)についておこなった。供試体の形状は図-3、図-4、表-1、表-2に示す。

試験ケースの概要としては、以下の因子の組合せとした。

「重ね継手部の重ね鉄筋の長さ」、「重ね継手鉄筋の鉛直方向の間隔S」、「重ね継手鉄筋の水 平純間隔Cもしくは鉄筋かぶり(供試体1の組合せ)」、「上側と下側の重ね継手鉄筋の中央位 置(供試体2の組合せ)」の組合せとした。

試験方法は供試体1については長手方向の中心に重ね継手をもった供試体に対して1点載荷し 供試体が壊れるまで単調載荷した。供試体2についても同様に長手方向の中心に重ね継手をもっ た供試体に対して2点載荷し、供試体が壊れるまで単調載荷した。供試体の設計は重ね継手部が 破壊するように、せん断補強を十分に行った。ただし、せん断補強の効果が重ね継手に及ばない ように継手部にはスターラップの配筋は避けた。

実物に近い構造のモデル(供試体1) 図-3 供試体の形状(スターラップは省略)

(1) AN 21-11	主鉄筋 As (cm ²)	$\begin{pmatrix} 1s^*\\ \phi \end{pmatrix}$	5** (cm)	с (ст)	破壊モーメント(t.m)		,	
任試体No					実測値	計算値	(kg/cm ²)	α
1	D19-3(8.60)	41	10.0	10.0	16.1	16.2	248	0.6
2	D19-5(14.33)	41	10.0	4.10	18.5	24.7	248	0.9
3	D19-7(20.06)	41	10.0	2.10	18.9	30.1	248	1.0
4	D19-3(8.60)	28	10.0	10.0	11.9	15.8	248	0.6
5	D19-7(20.06)	28	10.0	2.10	13.5	21.5	248	1.0
6	D19-5(14.33)	41	3.2	4.10	24.6	23.7	265	0.9
7	D19-3(8.60)	41	15.0	10.0	17.9	15.4	269	0.9
8	D19-5(14.33)	41	15.0	4.10	17.9	24.4	265	0.9
9	D25-4(20.27)	31	10.0	5.50	21.8	27.4	265	0.9
10	D25-4(20.27)	41	10.0	5.50	27.0	34.9	265	0.9

表-1 供試体寸法及び計算結果(供試体1)

* 重ね継手長さ 1 * * 重ね継手鉄筋の鉛直方向間隔 S * * * 重ね継手鉄 水平方間隔 * * * * * コンクリートの圧縮強度

ここでいう計算値は土木学会のコンクリート標準示方書に記載されている土木学会提案式を基 に重ね継手強度算を求めたものである。

0.7(2.0<κc≤2.5の場合) 0.6(2.5<κc の場合)

土木学会提案式(1),(2)は鉄筋のかぶり、重ね鉄筋の水平間隔、補強鉄筋をパラメータ とする式である。式(1),式(2),による継手強度は鉄筋とコンクリートとの付着強度を基 に算定している。従って、付着ひび割れでなく別のひび割れで破壊する試験体については、必ず しも当てはまらないことが考えられる。今回、式(1),式(2)による継手強度算定は重ね継 手強度の概算値をつかむ為に便宜的に用いたものである。表-1の破壊モーメントの算定におい て有効高さd は内側鉄筋位置と外側鉄筋位置の中央値をとった。

表-2 供試体寸法(供試体2)

供試体No	主鉄筋As (cm ²)	重ね継手長さ1 (¢)	d 1 • (cm)	d 2** (cm)	(d1+d2) /2 (cm)	S (cm)
123456789012345678	D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(55.1)D13-4(55.1) D13-4(55.1)D13-4(000005050000050500000 4444433334440000500000 4444433334444333344000	4350.520500000500000 4350.52070.500000500000 4350.52070.5000000 4350.52070.5000000000000000000000000000000	05055550555555555555555555555555555555	接1-1接1接11接11接11度11
*重ね	業手鉄筋の上 業手鉄筋の鉛	則鉄筋位置 d 1 直方问間隔 S	* * <u>1</u>	重ね継手鉄倉	筋の下側鉄筋位置	d 2

ここで、計算に用いている有効高さd'とは次式による。

有効高さ d' = $\frac{d1 + d2}{2}$

表-3 試験結果(供試体2)

供試体No	$\begin{pmatrix} 1 \\ \phi \end{pmatrix}$	S** (cm)	破壊モーメント 実測値 ^(t・m)	桃 手強度 実初値 (kg/cm ²)	重ね継手部割裂角度 (deg)	コンクリート強度 (kg/cm²)
1234567800-12345678	10 100 100 100 100 200 200 200 200 200 2	接11接1接150500500000000000000000000000000	4.5663380550965222483334 1.66035505965222483334 1.664455505965522483334 1.66495577744553	22000 220550 220550 23422550 2355550 2422550 2422550 2555550 2422550 2555550 2555550 2555550 255550 255550 255550 25550 25550 25500 25000 25500 25000 20000 20000 200000000	5505) 25057055055 4455055 1207055 147070555 1470705 1470705 147000000000000000000000000000000000000	352 3552 3552 3266 3226 3226 3226 3226 3
() け割裂角度がけっきりしかいもの						

()に割裂角度がはっきりしないもの。 *重ね継手長さ 1 **重ね継手鉄筋の鉛直方向間隔 S 4. 試験結果

今回の試験においては、供試体1については23供試体について載荷試験を実施し、その中で 継手部が破壊した10供試体についてとりあげた。供試体2については18供試体について載荷 試験を実施し試験結果はそれぞれ表-1、表-3に示す。

4.1 ひび割れ発生と重ね継手部破壊状況

供試体に載荷する中で、ひび割れが発生して から重ね継手部が割裂破壊に至るまでの載荷過 程を供試体2について以下に説明する。図-5 にひび割れ模式図を示す。

①重ね継手鉄筋のカットオフ付近から、ひび割れ(イ)が発生。

②重ね継手部の載荷点間にひび割れ(ロ)が発生。

- ③重ね継手部の上側重ね鉄筋に沿って、付着ひ び割れ(ハ)が発生。
- ④変位量に対する荷重の増加量が減少。 重ね継手に大きなひび割れが生じて重ね継部 が破壊した。
- 4.2 継手の破壊耐力

載荷試験は継手部が破壊するまで載荷しその 破壊形状および破壊耐力を測定した。測定結果 は表-1、表-3に示す。

供試体1の実物に近い構造のモデルの時に継 手強度の計算値を継手部が付着破壊するという 仮定のもとに、土木学会提案式の式(1),式

(2)を用いて求めた場合の破壊モーメントと [kg/cm²] 実際に実験によって測定された破壊モーメント の比較を図ー6に示す。破壊モーメント算定時 に用いる有効高さd は内側鉄筋と外側鉄筋の中 央値とした。また、計算値と実測値の比較とし て強度比(実測値/計算値)を用いた。図ー6 変類 を見ると実測値が計算値を下回る場合があった。

4.3 重ね継手長さ1の影響

供試体2について有効高さは上側鉄筋位置と 下側鉄筋位置の中央値として、継手破壊した時 の載荷荷重より継手の強度を算定した。この継 手強度と重ね継手の継手長さ1の関係を図-7 に示す。

鉛直方向に間隔がない重ね継手(接触)の場 合にはOrangun. et. alらの研究からもわかるよ うに継手長さに伴って継手強度は増加する。

重ね継手の鉛直方向間隔Sとの関連をみると 以下のような結果になった。接触の時には重ね供 継手長さに伴って継手強度は増加した。それに 対して重ね継手鉄筋に鉛直方向に間隔を有する 変 s=5,10,15cmのそれぞれ場合に継手長さの増加 に従って一律に継手強度が増加する傾向は見ら れなかった。重ね継手鉄筋間が破壊する破壊形 値 態である為だと思われる。

重ね継手長さと変形量の関係について図-8 に示す。継手部が破壊する供試体の変形挙動を 見た場合、通常の重ね継手鉄筋の鉛直方向に間 履をもたない場合、継手長さが長くなるにした がって変形性能は高くなるが、間隔を有する場 合には継手部分が急激に破壊するため、最大耐 力における変位量は小さかった。

4.4 重ね継手鉄筋の鉛直間隔Sの影響

供試体2について継手部破壊時の載荷荷重よ り重ね継手強度を求める。この時に用いる有効 高さd'は上側鉄筋位置と下側鉄筋位置の中央 位置と仮定して算定する。

●、▲ の有効高さを一定にしたモデルと
○、△、□ のように下側鉄筋を固定して
上側鉄筋の移動によって継手鉄筋の鉛直間隔を
とる有効高さが変化するモデルについて破壊荷
重から重ね継手強度を算定した。重ね継手強度
と重ね鉄筋の鉛直間隔Sの関係を図-9に示す。

継手長さ1が10 ϕ 、15 ϕ 、20 ϕ のそれぞれの^[deg] 場合に、鉛直間隔Sを0cmから15cmにするとグラ フの形状は条件によらず同様の傾向を示した。

これは、S=5cm程度までは、鉄筋に沿ったひ び割れが、終局的なひび割れにつながり破壊に 至った。S=10cm以上になると鉄筋に沿ったひび 割れと別に終局的ひび割れが発生し破壊に至っ た。その破壊形態が重ね継手鉄筋の鉛直間隔が S=5cmから10cmの間で変化する為に図-9の様 なグラフ概形になるものと思われる。

供試体に単調載荷を続けると最終的に重ね継 ⁵ 動ね総手鉄筋約直方向で 手部が破壊にいたる。その破壊形状は重ね鉄筋 図-10 ひび割れ角度-間を上下に割った終局的なひび割れを生じる。 **継手鉄筋鉛**

重ね鉄筋の鉛直方向に間隔をもたせた場合の重ね継手破壊を系統的にとらえる為に終局的な ひび割れの状況を分析する。

(1) 終局的なひび割れの角度と重ね継手鉄筋の鉛直方向間隔 S

分析方法として終局的なひび割れのひび割れ 角度と重ね継手鉄筋の鉛直方向間隔Sの関係に ついて図-10に示す。

図-10を見ると解かるように、鉄筋の重ね 継手長さが10々、15々、20々のそれぞれの場合 において、重ね継手鉄筋の鉛直間隔SをS=0.5. 10.15cmと増加させるに従ってひび割れ角度は大 きくなる傾向にあった。

(2) コンクリート強度と終局的なひび割れの角度 割れ 上側鉄筋と下側鉄筋の間がひび割れをおこす 時のひび割れ角度とコンクリート強度の関係を 図-11に示す。

図-11を見ると解るように鉛直方向に間隔 をもつ重ね継手の継手破壊時のひび割れ角度は コンクリート強度の増加に伴って増加した。

また、コンクリート強度に対するひび割れ角 度の増加率は重ね継手の鉛直間隔の大きさに伴 図-11 ひび割れ角度-コンクリート強度 い大きい値となった。

5. 結論

①重ね継手鉄筋に鉛直方向間隔Sがある重ね継手の場合には、重ね継手のラップ長1の増加に よる、継手強度の増加傾向は見られなかった。

②重ね継手鉄筋に鉛直方向間隔Sがある重ね継手の場合には、重ね継手のラップ長1の増加に よる、変形性能の増加傾向は見られなかった。

③重ね継手部の上側鉄筋と下側鉄筋の間に発生する終局的なひび割れにおけるひび割れ角度は 重ね継手鉄筋の鉛直方向間隔Sの値が大きくなるに従って大きくなる。

④コンクリート強度の増加に伴い重ね継手部の終局的なひび割れの角度は増加する。

6. 謝辞

本試験の計画にあたり、海野隆哉部長及び石橋忠良室長、古谷時春係長に多くの御指導をい ただきました。ここに改めて御礼申し上げます。

7. 参考文献

1)海野隆哉,棚村史郎,小畠克明ほか:連壁剛体基礎鉛直継手の構造性能に関する実験的研究 (その1~その3),土木学会第42回年次学術講演会講演概要集V, pp.270-275,昭和62年 9月

2)C.O.Orangun, J.O.Jirsa, J.E.Breen: "A Reevaluation of Test Data on Development Len gth and Splices", ACI Journal pp. 114-122, March/1977

-100 -

(供試体2)