論文

[2031] 鉄筋コンクリート柱、はり部材のせん断耐力の評価に関する 一考察

正会員〇益尾梁(日本建築総合試験所)

1. 序

せん断耐力の評価式として塑性理論に基づくA法およびB法が提案され[1]、 評価式の構成が 理論的に明解になっている。ただ、両式によるせん断耐力の推定精度は実用上十分とはいえず、 せん断補強筋の降伏強度の上限値の根拠もあまり明確でなく、付着割裂破壊の検討を別途行うこ ととしているが、これとせん断耐力との相関性も明確でない。さらに、高強度コンクリートを用 いた部材のせん断耐力の推定精度もあまり良くないとされている[2]。 なお、コンクリートの有 効係数 ν は、A法では、コンクリート強度の関数としており、せん断破壊型耐震壁等の既往の実 験結果による場合と定性的な傾向は一致している[3]。 これに対して、B法では、せん断スパン 比の関数としているが、このことの必然性は明確でない。

本研究では、せん断耐力の推定精度の向上を図るとともに、せん断耐力と付着割裂耐力との相 関性を検討しようとするものである。なお、本研究では、逆対称曲げを受ける場合を対象とし、 引用した既往の実験結果も逆対称加力による場合とした。

2. 終局せん断耐力評価式

2.1 塑性理論に基づくせん断耐力

松崎ら[4]は、せん断破壊型のはり試験体ついてせん断補強筋の補強効果(σw/σwy)を定量的 に評価できることを示した(σw、σwy:せん断補強筋のせん断耐力時における応力度および降 伏強度)。これによると、せん断補強筋量が少ないとσw はσwyに等しいとできるが、せん断補 強筋量が多くなるとσwはσwyに比べて小さくなる。この実験的事実を踏まえて、せん断耐力式 を式(1.1)のように定式化する。なお、式(1.1)では、45°トラス機構を仮定(cotφ=1、φ:トラ ス機構の角度)している。これに対して、A法では、1≦cotφ≦2およびトラス機構におけるコン クリート圧縮束応力が有効圧縮強度以下の条件のもとで最大のせん断強度を与えるようにcotφ を求めている[1]。ただ、せん断耐力には多くの要因が影響を及ぼすと考えられ、ここでは、各 要因の影響を考慮しやすくするため、評価式の簡単化を重視した。

 $Qsu = B \text{ jt } \nu s \text{ pw } \sigma wy + \tan \theta (1 - \beta) B D \nu c \sigma_B / 2 \qquad (1.1)$

$$\beta = 2 \nu s pw \sigma wy / \nu c \sigma_B , tan \theta = \sqrt{\left[(L/D)^2 + 1 \right]} - L/D$$
(1.2)

ここに、vs:せん断補強筋の有効係数、vc:コンクリートの有効係数、L:部材の内法長さ

B,D:部材断面の幅およびせい、jt:主筋の重心間距離、pw:せん断補強筋比

σwy:せん断補強筋の降伏強度、σ_B:コンクリートの圧縮強度、θ:アーチ機構の角度 式(1.1)による場合、理論的な不明解さを避けるために、A法およびB法におけるせん断補強 筋の降伏強度の上限(σwy≦25σ_B)は設けず、 せん断補強筋の有効係数νs(=σw/σwy)は、松崎 らの提案式に基づき次式で定義する。

pw σwy/√ σ_B ≤ 2.12 :
 (νc)test

 νs = 1
 (2.1)

 2.12 < pw σwy/√ σ_B ≤ 4.90 :
 1.4

 νs = 1.28-0.13pw σwy/√ σ_B (2.2)
 1.0

 4.90 < pw σwy/√ σ_B :
 0.6

 νs = 3.13 √ σ_B/pw σwy (2.3)
 0.6

 2.12 < pw σwy/√ σ_B ≤ 4.900 区間では、
 0.6

$$\chi_{c} = 0.7 - \sigma_{e} / 2000$$
 $\nu_{c} = 245 / \sigma_{e}$

 0.2
 0

 2.12 < pw σwy/√ σ_B ≤ 4.900 区間では、
 0.2

 $\chi_{c} = 0.7 - \sigma_{e} / 2000$
 $\nu_{c} = 245 / \sigma_{e}$

 0
 200
 400
 600

 0
 200
 400
 600
 σ_{e} (kgf/cm²)

 0
 200
 400
 600
 σ_{e} (kgf/cm²)

 0
 0
 100
 σ_{e} (kgf/cm²)

アーチ機構によるせん断強度τt,τaは、

それぞれpw σ wyの2次式となり、 ν s=1とした場合に比べ各せん断強度とも小さくなる (τ su=Qsu /Bjt, τ t=Qt/Bjt, τ a=Qa/Bjt)。なお、式(2.3)の条件を設けた場合、全せん断強度(τ su)max ならびにアーチ機構によるせん断強度 τ aoは、式(3.1),(3.2)でそれぞれ頭打ちとなる。これは、式(2.3)より ν s pw σ wy=3.13 $\sqrt{\sigma_{\rm B}}$ (一定値)となり、トラス機構によるせん断強度(τ t)maxを 頭打ちしているためである。この場合、アーチ機構によるせん断強度は、せん断補強筋量が増え ても式(3.2)の τ aoだけ残存する (図-3 参照)。

$$(\tau su)max = (\tau t)max + \tau ao$$

$$(\tau t)max = 3.13 \sqrt{\sigma_B}, \quad \tau ao = tan \theta (\nu c \sigma_B/2 - 3.13 \sqrt{\sigma_B}) D/jt$$
(3.1)
(3.2)

次に、既往の実験結果について、本評価式によるせん断耐力計算値が最大耐力実験値にできる だけ一致するように試行計算を繰り返し行い検討した結果、コンクリートの有効係数 ν cを式(4) のように設定した。 同式による場合、 $\sigma_B \ge 850 \text{kgf/cm}^2$ では、コンクリートの有効圧縮強度(= $\nu c \sigma_B$)が低下するが、これを避けることとした。 なお、既往の実験の柱試験体(107体)のう ち、終局耐力が後述の式(8)に基づき、せん断耐力Qsuで決まった試験体(22体)について、有効 係数(νc)testを式(5)より求め、(νc)test $-\sigma_B$ 関係を図-1に示した。 同図に示すように、式 (4)による ν cの計算値は、700 kgf/cm²程度までの高強度コンクリートを含めて概ね妥当に評価さ れているものと考えられ、A法の有効係数は式(5)より算出した(νc)testに比べてかなり小さい。 ただ、A法と本評価式では、せん断補強筋の項の評価方法が異なるため、単純な比較は難しい。

$$νc = 1 - σ_B / 1700$$
, $σ_B ≥ 850 kgf/cm^2 ℃ kg + 25 / σ_B$ (4)

$$(\nu c)$$
test = {Qmax - B jt $\nu s pw \sigma wy [1-(D/jt)tan \theta]} / [tan \theta B D \sigma_B/2]$ (5)

ここに、Qmax:最大耐力実験値、 vs は、式(2.1)~(2.3)による。

一方、A法およびB法では、トラス機構のコンクリート圧縮東応力が有効強度以下の条件 (pwσwy≦νσ_B/2)が設定されている。これに対して、本評価式では、全せん断強度の上限 強度(τsu)maxが式(3.1)により設定されているので、(τsu)max≦νc σ_B/2 の条件を満足すれ ばよい。すなわち、トラス機構とアーチ機構におけるコンクリート圧縮束の応力が理論的に考え られる上限強度νcσ_B/2によって制限されることになる。この場合、理論の単純化のために、両

図-2 (τ su)max $\leq \nu c \sigma_{B}/2$ における下限強度 σ_{B0} 図-3 τ su/ σ_{B} (τ a/ σ_{B})-pw σ wy/ $\int \sigma_{B}$ 関係

機構におけるコンクリート圧縮束の角度の相違は無視されている。

上記の条件式に式(3.1),(3.2)および式(4)を代入し得られた条件式の下限値は、コンクリート の圧縮強度のみの関数であり、その値 σ_{BO} は、常に 41 kgf/cm²となる(図-2 参照)。よって、 実用上、この条件を設定する必要はない。なお、jt/D=0.8, L/D=2 で σ_{B} =300,600kgf/cm²の場合 について、本評価式によるせん断強度を求め、図-3に示した。同図より、本評価式による場合、 せん断強度はせん断補強筋量pw σ wy が多くなると、 ν s=1とした場合に比べかなり小さくなり、 せん断強度の上限は式(3.1)による(τ su)maxで顕打ちとなることがわかる。

2.2 付着割裂耐力および斜張力破壊耐力

筆者らは、45°トラス機構を仮定したB法に対して森田・藤井式 [5]による付着割裂強度によって制限されるトラス機構を考えることにより、柱試験体の最大耐力の推定精度を向上できることを示した[6]。この考え方を式(1.1)に適用すると、付着割裂耐力は式(6)で得られる。

Qbu = $\tau \operatorname{bu} \Sigma \psi \operatorname{jt} + \operatorname{tan} \theta (1 - \beta \operatorname{b}) \operatorname{B} \operatorname{D} \nu \operatorname{c} \sigma_{\text{B}}/2$, $\beta \operatorname{b} = 2 \tau \operatorname{bu} \Sigma \psi / (\nu \operatorname{c} \sigma_{\text{B}} \operatorname{B})$ (6)

ここに、τbu:森田・藤井式による付着割裂強度、 Σφ:引張鉄筋の全周長

一方、せん断補強筋量が少なく軸力比が大きい場合には、トラスおよびアーチ機構を形成する 前にコンクリートの斜張力破壊が先行すると考えられ、市之瀬らの研究 [7]に基づくと、斜張力 破壊耐力は式(7)で与えられる。なお、式(7)中では、市之瀬らの式中のitをDに置き換えている。 これは、斜張力破壊耐力に対してはコンクリートの全断面積が有効と考えたためである。

$$Qds = B D \sigma ct \sqrt{(1+\sigma_0/\sigma_c t)}, \quad \sigma ct = 0.8 \sqrt{\sigma_B}, \quad \sigma o = N/(B D) \quad (7)$$

従って、塑性理論に基づくせん断耐力(式(1.1))、付着割裂耐力(式(6))および斜張力破壊 耐力(式(7))より決まる終局耐力(これを、総称して、「終局せん断耐力」と呼ぶ)は式(8)で 得られる。

$$Qsuo = Max [Qds, Min [Qsu, Qbu]]$$
(8)

$$-187-$$

3. せん断耐力評価式の適合性

主としてせん断耐力の評価のために行われた 既往の実験の柱試験体 107体およびはり試験体 144体について、本評価式の適合性を検討する。 検討対象の試験体の諸元を表-1に示す。なお、 pw=0の試験体を検討対象から除外し、試験体の 断面が比較的大きく(BD≧405cm²)、高強度せ ん断補強筋および高強度コンクリートを用いた 試験体を含めて検討対象としている。

表-1 検討対象試験体の諸元

	柱	はり
試験体数	107	144
$\sigma_{\rm B}$ (kgf/cm ²)	240 ~ 953	199 ~ 939
pw (%)	$0.10 \sim 1.38$	$0.12 \sim 1.42$
owy (kgf/cm ²)	3630 ~ 17340	2550 ~ 14600
pworwy (kgf/cm²)	9.3 ~ 114.4	6.9 ~ 165.4
L/D	$2.0 \sim 4.0$	1.8 ~ 4.0
$N / (\sigma_{B} B D)$	$0.0 \sim 0.73$	

本評価式による柱およびはりのQmax/Qfu-Qsuo/Qfu関係を図-4.1に示す。ここに、Qfu:終局 曲げ耐力(圧縮縁ひずみ度を3x10⁻³、σ-ε関係をe関数、および平面保持を仮定)。同図中に は、Qsuo/Qfu \leq 1の柱91体およびはり144体のQmax/Qsuoの統計値を示した。 また、A法およびB 法による場合についても、 Qmax/Qfu-Qsu/Qfu関係を図-4.2,4.3に示すとともに、 本評価式に よる場合と同一試験体のQmax/Quの統計値を示した。ここに、Qu = Min [Qsu , Qfu] なお、 A法による場合、Rp = 0 とし、 $\sigma_B \geq$ 700kgf/cm²では、 ν =245/ σ_B とした。

これらによると、本評価式による場合、Qmax/Qsuoの平均値および変動係数は、柱では1.103お よび11.7%、はりでは1.205および18.3%であり、 終局せん断耐力はA法およびB法による場合と 比較して精度良く評価されていることがわかる。 また、Qsuo/Qfu>1の試験体についても、A法 およびB法の場合のように、最大耐力実験値が終局曲げ耐力を下回ることは少ない。このことは、 せん断補強筋量が比較的多く、終局耐力が終局曲げ耐力以外に付着割裂耐力の影響を受けている 場合についても、本評価式により終局せん断耐力が適正に評価されているためと考えられる。

4. 塑性理論によるせん断耐力と付着割裂耐力および斜張力耐力との相関関係

森田・藤井式による付着割裂強度 τ bu は、サイドスプリット・モードのみ考えることにより式 (9.1), (9.2)のように表すことができる。なお、通常の柱、はり部材の配筋では、サイドスプリット・モード以外 のコーナースプリット・モードおよびVノッf・モードはほとんど起こらないものと考えられる。また、付着割裂耐 力(式(6))において、1段配筋の場合($\Sigma \phi = N \phi$)の場合、 $\Sigma \phi / B = \pi / (bsi+1)$ とできるの で、式(10.1)に示すように、付着割裂耐力は pw'とbsiおよび σ_B の関数となる。よって、終局せ ん断強度 τ suoは、式(8)と同様、式(10.2)で得られる。

 $\tau \operatorname{co} = (0.307 \operatorname{bsi} + 0.427) \sqrt{\sigma_{\rm B}}, \quad \tau \operatorname{st} = [24.9 \operatorname{pw}'(\operatorname{bsi} + 1)] \sqrt{\sigma_{\rm B}} \leq 0.87 \sqrt{\sigma_{\rm B}} \quad (9.1)$

τbu = τco+τst : 水平上端筋, τbu = 1.22 (τco+τst): 水平上端筋以外 (9.2)

 $s(\tau bu) = Qbu/(B jt) = \tau bu \pi/(bsi+1) + tan \theta (1-\beta b)(D/jt) \nu c\sigma B/2$ (10.1)

 $\tau \operatorname{suo} = \operatorname{Qsuo}/(B \text{ jt}) = \operatorname{Max} \{ \tau \operatorname{ds}, \operatorname{Min} [\tau \operatorname{su}, \operatorname{s}(\tau \operatorname{bu})] \}$ (10.2)

 ここに、bi = bsi = B / (N db) - 1 , N : 1列の主筋の本数、 db : 主筋径 pw' = aw' / (B s') : 部材中央部におけるせん断補強筋比 s', aw' : 部材中央部におけるせん断補強筋の間隔および1 組の断面積 て su = Qsu/(B jt)

 $\tau ds = Qds/(B jt)$

そこで、jt/D=0.8, L/D=4, bsi=3, σ_{B} = 300kgf/cm²、 σ wy= 4000, 8000, 13000 kgf/cm², σ_{0}/σ_{B} = 0, 0.6 の柱について、 τ suo/ σ_{B} -pw σ wy関係を求め、図-5に示 した。 ただし、pw σ wy=pw' σ wy'としてお り、bsi=3 は付着割裂破壊の条件として比 較的厳しい場合を表す。

同図に示すように、せん断補強筋量が比 較的少ないと、σο/σ_B=0の場合には斜張 力破壊耐力の影響を受けないが、σο/σ_B=

0.6の場合には斜張力破壊耐力の影響を受けており、終局せん断強度 τ suoは軸力の影響を受ける ことがわかる。 ただ、この計算結果では、その影響はあまり大きくない。 なお、L/Dの値が小 さくなると、せん断強度 τ suが大きくなるため、 終局せん断強度 τ suoは斜張力破壊耐力の影響 を受けなくなる。また、既往の実験では、高軸力を受け、かつ、せん断補強筋量が少なく、斜張 力破壊耐力で決まっている場合があり、実験値に対する推定精度を高めるために、斜張力破壊耐 力を考慮する必要がある。 一方、斜張力破壊耐力で最大耐力が決まる場合、最大耐力後の性状 は脆性的となるため、設計上は、斜張力破壊耐力で決まらないようにせん断補強筋量を決めるべ きと考えられる。

また、せん断補強筋量が多くなると、せん断強度は増えるものの、 式(3.1)によるせん断強度 の上限(τ su)max以前に付着割裂強度の上限 s(τ bu)max (:式(9.1)における τ stの上限値0.87 $\sqrt{\sigma_B}$ で決まる場合) により終局せん断強度 τ suoは頭打ちとなる。ただし、ここでは、終局曲げ 耐力による頭打ちは考えていない。また、同一せん断補強筋量pw σ wyに対して、せん断補強筋の 降伏強度 σ wyが 8000kgf/cm² や 13000kgf/cm²のように高くなると、せん断補強筋比pwが少なく なるため、付着割裂強度の影響を大きく受けることがわかる。

5. 結 論

本論文では、逆対称曲げを受ける柱、はり部材を対象として、松崎らによるせん断補強筋の補 強効果を考慮に入れた塑性理論に基づくせん断耐力式を考え、さらに、付着割裂耐力ならびに斜 張力破壊耐力を考慮に入れることにより、終局せん断耐力を比較的精度良く推定できることを示 すとともに、塑性理論に基づくせん断耐力と付着割裂耐力ならびに斜張力破壊耐力との相関性を 解析的に明確にした。また、本評価式を導出するにあたり、せん断破壊型柱の実験結果に対して コンクリートの有効係数 ν cの評価式の検証を行った。

参考文献

- 1) 日本建築学会:鉄筋コンクリート造建物の終局強度型耐震設計指針・同解説、1990.10
- 2) 榎本浩之、慶 祐一、渡辺史夫、六軍 照:高強度コンクリートを用いた梁のせん断強度に 関する研究(その2. せん断強度の評価)、日本建築学会大会梗機集、pp.271-272、1991.9
- 3) 益尾 潔:鉄筋コンクリート耐震壁のせん断耐力に関する研究、日本建築学会構造系論文報告集、No.380、pp.76-87、1987.10
- 4) 磯 雅人、松崎育弘、渡辺英義:鉄筋コンクリート梁部材におけるせん断補強筋の補強効果 に関する実験的研究(その2)、日本建築学会大会梗機集、pp.277-278、1991.9
- 5) 藤井 栄、森田司郎: 異形鉄筋の付着割裂強度に関する研究、第二報、日本建築学会論文報 告集、No. 324、pp.45-53、1983.2
- 6) 柴田正隆、中澤 淳、益尾 潔、南 宏一:高強度マルチフープを用いた鉄筋コンクリート 柱のせん断破壊性状(その1)~(その3)、日本建築学会大会梗機集、pp.129-134、1991.9
- 7) 横尾慎一、市之瀬敏勝:RC部材のせん断設計法への一提案、日本建築学会大会梗概集、 pp.283-284、1991.9

紙面の都合上、本論文中で引用した実験結果に関する論文は省略する。