論文

[2032] ひびわれ面で軸変形とズレ変形を同時に受ける軸方向鉄筋の 非弾性挙動に関する研究

正会員〇三島 徹也(前田建設工業技術研究所)

正会員 鈴木 顕彰(同 上)

正会員 篠田 佳男 (同上)

正会員 前川 宏一(東京大学土木工学科)

1. はじめに

ひびわれ面に埋設された鉄筋の力学的特性は、従来、ひびわれ直交方向(抜け出し作用¹⁾)と 平行方向(ダボ作用²⁾)にそれぞれ個別に検討されてきた。ところが、鉄筋に軸力が存在すると ダボ耐力が低下することが鈴木ら³⁾によって指摘されている。この事実は、鉄筋にダボ応力が発 生すると鉄筋の軸方向耐力が低下することをも示唆している。鉄筋の拘束効果が低減すると、ひ びわれ面のせん断耐力は低下する。したがって、鉄筋のダボ効果は、ひびわれ面のせん断耐力を 高める効果と低減させる効果の2面性を持つこととなる。ダボ効果がこのような2面性を持つこ とから、ダボ変形と軸変形の連成作用を無視したモデル化は危険側になる可能性もあり、より一 般化された変形経路(軸変位とズレ変位)下での鉄筋の軸方向抜け出しモデルの構築が望まれる。

本研究の目的は、著者らが実施した一面せん断試験結果に基づき、軸変位とズレ変位を同時に 受ける埋設鉄筋の力学的性状を検討し、鉄筋モデルの一般化に必要な実験データを収集すること にある。特に、本研究では、ズレ変位が鉄筋の抜け出し性状に与える影響について検討する。

2. 鉄筋コンクリート部材の一面せん断試験

2.1 試験体

本研究の試験体は、著者らが実施した一面せん断試験の一部であり、表-1に示す通りである。 本試験は打継ぎ処理を施したコンクリート接合面の応力伝達特性を調べる目的で実施されたもの であるが、本研究では補強鉄筋の挙動のみに着目して検討を行う。試験体は平滑処理試験体、チ ッピング処理試験体の2種類があり、平滑処理試験体は別報に詳しい⁴³。どちらのタイプも鉄筋 比0.37、0.74、1.10%の3体づつ実施されたが、本研究では、鉄筋比0.74%を中心に検討する。 打継ぎ処理が同じであれば、補強鉄筋の挙動はほぼ同様の傾向を示すことを確認しており、代表

N 0.	処理	鉄筋比 (%)	コンクリート強度 (Kg/cm²)	せん断面積 (cm²)	鉄筋径	本 数 (本)
1	平滑	0.37	273	2160	D16	4
2		0.74	277			8
3		1.10	252			12
4	fyt° >9°	0.37	251			4
5		0.74	239			8
6		1.10	232			12

表-1 試験体一覧

的な2体を検討することによって力学的性状を 十分把握できる。

試験体の形状、配筋は接合面の補強鉄筋量が 異なる点を除いて各試験体とも同様で、図-1 に示す通りである。接合面を貫通する補強鉄筋 の定着長は20D以上確保し、鉄筋の抜け出し 特性が定着長の影響を受けないように配慮した。 打継ぎ方法に関しては、チッピング処理は骨材 が接合面から数mm浮きでるまで表面のモルタル を除去する程度ととし、平滑処理は小手仕上げ 程度とした。各試験体とも、先打ち部打設から 約7日間湿潤養生を行った後、後打ち部コンク リートを打設した。

コンクリートの配合強度は240kgf/cmであり、 最大骨材寸法は20mmとした。使用した鉄筋は 電炉製の異形鉄筋D16であり、一軸引張試験 結果は図-2に示す通りである。

2.2 計測項目

溝切り処理(幅:3 mm、深さ:3 mm)を施し た鉄筋を使用し、鉄筋ひずみ測定が鉄筋の付着 性状に影響を及ぼさないよう配慮するとともに、 ひずみゲージを鉄筋中心軸に対して、加力側と その反対側に位置するように配置し、ズレ変位 に伴う鉄筋の曲げ変形と軸変形の両者を検出で きるようにした(図−3)。接合鉄筋の中の2 本に図−4に示すような間隔でひずみゲージを 添付し、ひずみ分布測定を行った。この鉄筋を 主な試験対象として、せん断ズレと軸変位を同 時に受ける鉄筋の力学的挙動の解明を試みる。

図-1に示す試験体の表裏、各3箇所に変位 計を設置し、接合面の開口変位とせん断ズレ変 位の測定を行った。本試験の計測変位はあくま で表面で測定されたものであり、接合断面の平 均変位と異なると思われるが、簡易的に測定値

の平均をひびわれ面の代表変位と考えた。また、コンクリートの変形は微少であると考え、ひず み分布測定用鉄筋の軸変位とズレ変位も接合面の開口変位とせん断ズレ変位にそれぞれ等しいと 仮定した。

2.3 载荷試験

載荷はプッシュオフ形式の一面せん断試験にて行った。鉄筋コンクリート部材の一面せん断試 験には、接合面にあらかじめひびわれを導入した後、せん断加力を行う方式と、最初からせん断

-192-

加力を加える方式の2通りがある。本研究では、 後者、すなわち、最初からせん断加力を行う方 式を採った。本方式を採用した場合、接合面以 外のせん断ひびわれ発生が懸念されるが、本試 験体の接合面は打継ぎ面であり、一般部コンク リートに比べて引張強度が低いため、本方式を とっても有害なひびわれは発生せず、接合面に 沿ってそってきれいに開口した。

図-5に各試験体のせん断ズレ変位-せん断 応力関係とせん断ズレ-開口変位関係を示す。 各試験体とも、接合面が開口するまでほとんど せん断ズレ、開口変位とも発生していない。本 研究では、接合面開口後の挙動のみに着目する こととする。平滑処理試験体はひびわれ面の凹 凸が非常に小さいため、開口変位量も非常に小 さいが、チッピング試験体ではせん断ズレの4 割程度の開口変位が生じている。両タイプの試 験体を比べることによって、せん断ズレと開口 変位の比率が鉄筋挙動に与える影響を明確に把 握することができる。

3. 試験結果の考察

3.1 鉄筋の軸ひずみ分布

図-6にNo.2 (平滑面)、No.5 (チッ ピング面)試験体の代表的な載荷段階の鉄筋軸 ひずみ分布を示す。なお、軸ひずみは鉄筋の表 裏で測定したひずみを平均して求めた。 No. 2、5試験体とも、せん断ずれが少ない範囲で はほぼ山形の分布形状をしており、接合面の軸 ひずみが最も大きい。この分布性状はRC部材 の両引き試験結果等から得られるものと同様で ある。ところが、せん断ズレが大きくなり、接 合面開口後の最大荷重近くになると、接合面か ら1 D離れた位置(以降1 D位置と呼ぶ)の軸 ひずみが急増し、接合面位置のひずみと大小関 係が逆転する現象が見られる。特に、最大荷重 後のせん断ズレが非常に大きい時には、1 D位 置の平均軸ひずみは降伏ひずみを大きく上回っ ており、接合面内部で塑性が進行していること が分かる。にもかかわらず、接合面位置の軸ひ

図-6 鉄筋の軸ひずみ分布

ずみは降伏ひずみ以下であり、弾性域にあるこ とは注目に値する。せん断ズレと軸ひずみが存 在する場合の鉄筋の変形性状は、純引張状態の 試験結果から単純に類推することはできないこ とが分かる。

3.2 鉄筋の曲率分布

図-7にNo.2、5 試験体の曲率分布を示 す。曲率は鉄筋の表裏のひずみ値を鉄筋径で除 すことによって求めた。曲率分布も、軸ひずみ 分布と同様に1D位置で最大になっており、軸 ひずみ分布性状と曲率分布性状は密接に関連し ていると思われる。なお、塑性が開始した後の 軸ひずみ分布、曲率分布とも1D位置近傍で急 激に値が変化しており、変形が非常に局所的な 部分に集中していることにも注意する必要があ る。

1 D位置の曲率が極めて大きいことより、鉄 筋を一次元線材と見なすことはできず、3次元 的な棒部材として扱う必要があることが理解さ れる。曲げと軸力を同時に受ける弾塑性棒部材 では、終局耐力MuとNuの間に図-8に示すよ うな相関があることが知られている。せん断ズ レを受ける鉄筋についても同様の扱いをしなけ れば、鉄筋の正確な軸方向の応力状態を把握で きないのである。鉄筋を完全弾塑性材料と仮定 し、さらに断面の平面保持を仮定した場合の、 1 D位置の鉄筋の実測ひずみに基づいて算定し た応力状態の推移を図-9に示す。1 D位置の 鉄筋は軸降伏というよりもむしろ曲げ降伏に近 い状態である。

3.3 鉄筋の軸ひずみ-軸応力関係

一般に、鉄筋断面の平面保持を仮定すれば、 鉄筋断面の平均軸応力は鉄筋の軸ひずみと曲率

の関数として与えられ、図-10に示すようになる。仮に、鉄筋の軸ひずみと曲率に対する変形 経路が図-10の実線に示す経路となった場合、曲げ降伏の影響によって、鉄筋の平均軸ひずみ の最大値が一軸降伏強度をはるかに下回ることになる。No.2、5 試験体の1D位置の軸ひず み、曲率履歴から算定した軸ひずみ-軸応力関係は図-11に示す通りとなる。どちらの試験体 とも、見かけ上の降伏点が大きく低下し、一軸降伏応力の数割程度となっている。特に、せん断 ズレが開口変位に対して非常に大きい平滑面試験体(No.2)では、 1/3程度まで低下して いる。曲率の存在を無視すると、鉄筋の応力状態を正しく推定できないことが実証された。 3.4 鉄筋の軸力分布

図-12は、前節と同様の手法で、曲率と軸 ひずみの連成を考慮して計算した鉄筋軸力分布 である。接合面近傍で値にばらつきがあり、算 定誤差が少なからず含まれていると推察される が、接合面3D以内の軸力がほぼ一定値となる 傾向が見られる。これは、接合面近傍でコンク リートの局所破壊が起こり、付着力がほとんど 消滅していると考えれば妥当な結果である。仮 に、軸応力が接合面近傍でほぼ一定値をとると すれば、軸ひずみが最大になる位置は、鉄筋軸 剛性が最も小さい所となる。曲率の影響により 1D位置の軸剛性は大きく低下しており、軸ひ ずみ分布が1D位置で最大となる原因はここに あると思われる。

3.5 鉄筋応力と抜け出し量の関係

鉄筋抜け出し量は鉄筋軸ひずみを積分したも のである。従来の鉄筋抜け出しモデル^{1),5)}で はコンクリート内部の鉄筋の曲率増大に伴う塑 性変形を無視しており、鉄筋抜け出し量を少な く見積もることとなる。また、鉄筋応力の連続 性と接合面近傍の付着劣化を考慮すると、接合 面の鉄筋応力と1D位置の鉄筋応力はほぼ等し い。このことは、接合面の鉄筋応力の限界値が 1D位置と同様に鉄筋降伏応力の数割程度に低 下することを意味しており、特に重要である。

従来の鉄筋ひずみーすべり関係(申モデル⁵³) を用いて算定した接合面の鉄筋応力-抜け出し 関係と実験値の比較を図-13に示す。初期剛 性は比較的一致しているが、内部の塑性進行開 始後は計算結果に比べて大きく剛性、耐力とも 低下している。従来の鉄筋ひずみ-すべり関係 とコンクリートの応力伝達モデルを組み合わせ て接合面のせん断耐力を算定した場合、せん断 耐力を高めに見積もる可能性が高いことが理解 される。実際、著者らが開発した離散ひびわれ モデル⁶³において、鉄筋抜け出し⁵³とコンクリ ートの応力伝達モデル⁷³単体では十分な精度を 有しているにもかかわらず、それらを重ね合わ せた結果得られる離散ひびわれモデルがせん断

耐力を数割程度高めに見積もる場合もあること が報告されている。その理由は明らかにされて いないが、この影響が大きいものと推定される。

なお、変形の対称性を考慮すると、接合位置 の鉄筋の曲率はゼロである。接合面位置の鉄筋 軸応力の最大値が一軸降伏応力の数割程度とな ることは、接合位置の鉄筋は全断面で弾性状態 を保っていることを意味している。接合位置の 鉄筋軸ひずみが弾性であるからといって、鉄筋 抜け出しが弾性的に挙動しているとは限らない

のである。山田らのプッシュオフ試験で、接合面の鉄筋が弾性範囲にある時にせん断破壊する試 験体が多数報告されている⁸⁾が、この破壊モードも内部の塑性変形進行にともなう鉄筋剛性の低 下、つまり、コンクリート面に対する拘束効果の低下によって説明することができる。

4. 結論

R C 打継ぎ面の一面せん断試験結果から、埋設鉄筋の挙動を抽出し、ズレ変位と軸変位を同時 に受ける鉄筋の非弾性挙動を実験的に求めた。その結果、以下の結論を得た。

1) ズレ変位と軸変位を同時に受ける接合面に埋設された鉄筋の軸ひずみは、接合面で最大とな らず、接合面から1D近傍で最大となり、内部で塑性が進行していることを明らかにした。

2) ズレ変位にともなう鉄筋の局所曲げに着目し、鉄筋を弾塑性体とし、鉄筋軸ひずみと曲率を 連成させることによって、上記現象が説明できることを明らかにした。特に、曲率の存在が鉄筋 軸剛性を低減させ、さらには、鉄筋軸応力の限界値をも低減させることを明らかにし、曲率を考 慮したモデル化が重要であることを示した。

3) ズレ変位と軸変位を同時に受ける鉄筋の抜け出し挙動は、純引張状態のそれと大きくことな り、曲率の存在を無視した鉄筋モデルはひびわれ面のせん断伝達耐力を高めに見積もる可能性が あることを示唆した。

【参考文献】

- 1) Sima, H., Chou, L. and Okamura, H.: Micro and macro models for bond behavior in reinforced concrete, Journal of the faculty of engineering, The University of Tokyo (B), Vol. 39, No. 2, 1987.
- 2) Paulay, T., Park, R., and Phillips, M. H.: Horisontal construction joints in cast-in-place reinforced concrete, ACI SP42-27, pp. 599-616, 1974.
- 3) 鈴木・中村・堀内・尾坂: 軸方向鉄筋のダウエル作用に及ぼす引張力の影響に関する実験的研究、土木学会論文集、No. 426/V-14, pp. 15 9-166, 1991年2月
- 4) 篠田・三島・大野・田中: 平清面における鉄筋のダボ効果について、第14回コンクリート工学年次講演会論文集(投稿中)
- 5)申 鉉穆: 繰り返し面内力を受ける鉄筋コンクリート部材の有限要素解析、東京大学博士論文、1988年6月
- 6) 三島、Bujadhan, B. ・前川: 正負交番載荷に適用可能なRC離散ひびわれモデルの開発とその適用範囲、土木学会論文集、No. 442/V-16, pp. 181-190, 1992年2月
- 7) Bujadham, B., LI, B. and Maekawa, K.: Path-dependent stress transfer along crack in concrete, Proceedings of the JCI colloquium on analytical studies on shear design of reinforced concrete structures, JCI, pp. 65-72, Oct. 1989.
- 8)山田・青柳: ひびわれ面におけるせん断伝達、第2回RC構造のせん断問題に対する解析的研究に関するコロキウム論文集。コンクリート 工学協会、pp. 19-26, 1983年10月