論文

[2078] プレキャスト RC 造柱の埋込み接合部の挙動に関する実験的研究

正会員	〇小山内	1 裕	(オ	リコ	ニン	タハ	ノ建設	设扎	支術	部)
正会員	今井	昌文	(オ	リエ	ンろ	アル建	載設	技術	研究	【所)
正会員	加藤	博人	(建	設	省	<u>و</u>	書 築	研	究	所)
正会員	渡辺	史夫	(京	都	大	学	建	築	学	科)

1. まえがき

建設ブームは峠を越えたと言われながらも、RC造建物の建設現場では労務事情の大幅な改善 は望むべくもなく、省力化と効率化のためにプレキャスト(PCa)部材による組立工法の要求 はますます高くなってきた。組立工法の生命は接合部であり、柱梁接合部の研究は数多くなされ ている。柱脚については鉄骨系の建物では研究も多く設計手法まで整備されているが、RC造建 物では、特に埋込み柱の場合、設計指針もなく計算方法も定かでない。柱脚の種類には基礎地中 梁施工後に柱をセットする上置き形式と基礎の中に柱脚を埋め込む埋込み形式とがある。上置き 形式には露出型と根巻き型があり、埋込み形式には先置き型と後置き型(ソケット型)がある。

PCa組立工法では露出型が多く使用される。ソケット型は施工時の柱の自立性など能率的で ありながら設計法が確立されていないためかその使用例は少ない。また、安全側の設計を行うた め基礎が大きくなりがちである。今後ますます増えるであろうPCa組立工法の適用に対し、早 急な埋込み式柱の柱脚設計法の確立を期待する。

プレキャストRC造埋込み柱脚部の経済的・合理的な設 計法を確立する為には埋め込まれた柱の固定度の評価、変 形性能の確保さらに破壊形式の把握が必要である。また実 際の設計のためには埋め込まれた柱とソケット部の力の伝 達、ソケット部に発生する応力およびそれに対する効果的 な補強筋の配置方法を明確にしなければならない。

本研究では、前述の内容のうち、基礎に埋め込まれたソ ケット型PCa柱の中柱および側柱について埋込み深さそ の他をパラメーターとした柱の固定度と変形性状を明確に することを目的として実験を行い考察を加える。

2. 試験体概要

試験体に使用した材料を表-1、2に示す。試験体の大きさ は実物の1/2とした。柱脚の固定度に影響を与える要素とし て、埋込み深さ、基礎補強筋量、へりあき幅、柱の挙動に 影響のある柱軸力を変化させた試験体を製作した。試験体 のパラメーターを表-3に示す。

試験体の形状寸法および配筋を図-1に示す。柱主筋は中 柱・側柱とも8-D25とした。なお、表-3中のTYPE-1および TYPE-11は従来工法による一体打ちである。

表-1	コンク	リー	ト (kgf/cm ⁱ	')
-----	-----	----	------------------------	----

TYPE	部材	Fc	Ес
1~ 4	柱	581	3.23x10 ⁶
	基礎	217	1.81x10*
11~17	柱	376	2.81x10*
	其限	197	1 93 10 5

表-2	鉄筋	(tonf/cm³)			
鉄筋	σγ	σb	Es		
D-13	3.140	4.720	1940		
D-16	3.260	5.010	1890		
D-22	3.820	5.730	1850		
D-25	3,860	5.370	1880		
σy:降(代時応力度	Ę			

σb:破断時応力度

表-3 パラメーター

TYPE		へりあ	埋込み	補強筋n-D22		
		き幅 b	深さDe	上端	柱底	
	1	30 cm	1	6	1	
ф	2	30	75 cm	4	4	
柱	3	30	62.5	4	4	
	4	30	50	4	4	
	11	25	-	4-U	2-U	
	12	25	75	3-U	2-U	
创	13	30	75	4-U	2-U	
	14	20	75	4-U	2-U	
柱	15	25	75	4-U	2-U	
	16	25	62.5	4-U	2-0	
	17	25	50	4-11	2-U	

側柱試験体の基礎には表-3に示すとおり、U字形の補強筋D22 を配置した。U字形補強筋は鋼管構造設計指針(式(1))により 算定し、柱の耐力に対して必要な補強筋量4-U-D22を標準とした。

今回の試験は鋼管構造とは異なったメカニズム の可能性があるので、基礎補強筋の少ない試験 体(TYPE-12)を設定した。柱と基礎の空隙40mmの 部分には流動性の高いプレミックスタイプの早 強モルタル(骨材径2mm以下、Fc=600kgf/cm²) を充填した。

図-2 加力サイクル図

(1)

3.実験概要

試験体は、柱脚に生じる曲げモーメントおよびせん断力に抵抗 するために、異形PC鋼棒(32mm)4本で反力床に圧着した。

側柱の柱脚直下は柱軸力を支持するために鉄板(9mm)を敷き、 20cmの長さで基礎全幅に亘ってグラウトを注入した。

柱軸力は、TYPE-15は10tonf、その他は120tonfを200tonfジャ ッキで柱頭に加力し、油圧制御装置を使用して一定にコントロー ルした。また、リニアウェイと補助ジャッキを使用して200tonf ジャッキを柱頭水平変位に追随させた。

水平力は50tonfジャッキにより正負交番荷 重を加え、柱曲げ終局荷重または柱頭変位δ t=±15mmまでは荷重制御、柱頭変位δt=±15 mm以降は変位制御としてδt=±50mmを最終と した。加力サイクルを図-2に示す。

測定に使用した変位計の位置および加力点 位置を図-3に示す。変位計は不動点に固定し たポストを基準として、A,Bで水平変位量を、 C,Dで鉛直変位量を測定した。これによりス タブの回転変位は取り除かれる。

4.実験結果と考察

各種耐力の計算は、中柱・側柱毎の材料試験 の実測平均値を使用し、日本建築学会「鉄筋 コンクリート終局強度に関する資料」によっ た。本論文の荷重(P)-変位(柱頭δt)曲線は 主として履歴曲線の内、包絡線を掲載した。

中柱においては、負荷重によるP-δ t曲線 は正荷重の場合と同形状を示すので省略する。

全ての試験体は柱の曲げ破壊により終局荷 重に至った。

4.1 全体変形(δt)

a.中柱:剛性は $P-\delta$ t曲線(図-4)によれば P=0~21.2tonfでは、TYPE-2,3,4はほぼ等し いのに対して、TYPE-1の剛性がやや小さい。 P=21.2~38.8tonfではTYPE-4,3,2,1の順に 変位量るtが小さく、埋込み深さとの相関性 があり、埋込み深さは柱の剛性に影響する。

終局荷重はTYPE-1,2,3,4ともほぼ同じで、 埋込み深さの影響はない。 インデックス 図-4 ~10に共通

表-4 各種耐力計算值

軸力(tonf)				
N=120	N=10			
þ				
4				
4				
Mcr :曲げひび割れ時				
	<u>軸力(t</u> N=120 〇- 〇- げひび割			

Mscr:曲げせん断ひび割れ時 Mu :曲げ終局時

×:柱主筋引張り降伏位置

b. 側柱:正荷重のP-δt曲線(図-4)では軸力の低いTYPE-15を除けば、各試験体の曲線は同一形状を示しており、一体打ち(TYPE-11)と埋込み式の差異もない。図-5に実物と同プロポーションの試験体(TYPE-13)の履歴曲線を示す。

負の荷重(図−6)では各試験体の曲線には曲 げせん断ひび割れ荷重以前・以後の剛性、明 瞭な部材降伏点、終局荷重の大きさなどに様 々な特徴がみられ、これらの曲線の特徴を概 念的に表したのが図-7である。

①は一体打ちで柱主筋の引張り降伏による 明瞭な部材降伏点が見られ、埋込み式の他の 試験体では明瞭な折れ曲がり点が見られない。 初期剛性:初期剛性の小さい曲線はへりあき の小さい③と軸力の小さい④で、大きいのは ②⑤である。②⑤は曲げせん断ひび割れ荷重 以後の剛性が小さい。初期剛性の大小はへり あき幅および軸力に依存している。

終局荷重:⑤(TYPE-17)はP=-30tonfを越える と、変位量が著しく大きくなっているが、柱主 筋、基礎補強筋とも引張り降伏ひずみには至 らず、P=約-32tonfで終局荷重となり柱の保 有する終局耐力に達していない。これは埋込 み深さが不十分なためである。その他のTYPE ではすべての試験体が柱の保有する終局耐力 に達している。また図-6(TYPE-12,13,14)で わかるように埋込み深さが十分であればへり あき幅は柱の終局耐力には影響を与えない。

-450-

4.2 変形量の分析

a. 柱のみの変形(δc):図-8は基礎上面より 上の柱の変形による柱頭の変位量(δc)である。

これらの図より、軸力の小さいTYPE-15(N =10tonf)を除きすべての試験体はほぼ同一曲 線であることがわかる。よって柱脚の固定度 の違いは基礎上面より上部の柱自体の変形に 影響を及ぼさないといえる。

b. 基礎部の変形(δb): 全変位量(δt)と柱 のみの変位量(δc)の差は、基礎に埋め込ま れた柱脚部分の変形による柱頭変位量(δb) となる。荷重 P とδbの関係を図-9,10に示す。

P-δb曲線はTYPE-1~4、TYPE-11~17の正 荷重(図-9) およびTYPE-11の負荷重(図-10) では類似の形状を示す。

側柱の負荷重における曲線(図-10)では、
曲げせん断ひび割れ荷重以降は剛性が次第に
小さくなり終局荷重に至っている。これは基
礎に埋め込まれた部分の柱に対する拘束度が
徐々に低下するためと考えられ、ひび割れ
(図-11)発生状況からも類推される。

4.3 柱脚の固定度に影響する要因 a.埋込み深さ比:中柱で、柱長径(D)の1.0 倍でも基礎の挙動(図-9)が安定しているのは 支圧力を柱の前後面にある剛性の高いコンク リートのスタブで受けるためと考えられる。

創柱では、負荷重時は埋込み深さが柱脚固定度に与える影響は大きく、埋込み深さが1. 25D(TYPE-16)では柱脚部の挙動は安定しているが、1.0D(TYPE-17)では基礎の変形による柱頭の変位(図-10)が大きい。また柱軸力が小さいTYPE-15では基礎部分の変形も大きい。 b.ひび割れ:基礎に発生するひび割れの内、最も大きなものは、負荷重における斜めせん断ひび割れ(図-11、③)であり、基礎の変形に寄与していると考えられる。側柱における基礎ひび割れ発生の過程は以下の通りである。(1)柱の両側の基礎上面に曲げひび割れ①が

P=6~11tonfで発生する。

- (2)基礎上面の前面支圧側に曲げひび割れ②がP=11~24tonfで発生する。
- (3)支圧側基礎上面に柱出隅部から45度方向のせん断 ひび割れ③がP=16~24tonfで発生する。
- (4)荷重の増大に伴い、斜めせん断ひび割れ③の幅は 荷重方向に拡大するが、①②のひび割れ幅はそれ ほど拡大せず、長さが伸長する。

c.へりあき幅:図-10でTYPE-13,14を比較すると埋込 み部の変形にはへりあき幅の影響のないことがわかる。

d.基礎補強筋量:図-10によれば補強筋量の
 少ないTYPE-12はδb=12mm以前ではTYPE-13,
 14と同様な曲線となっているがδb=12mm以
 降ではTYPE-13,14が荷重が増加しているの
 に対して、TYPE-12では増加の割合が低い。

図-12によればTYPE-12, 13, 14の基礎補強 筋のひずみ ε sは P の増加に伴い増加してお り、基礎コンクリートが柱から受ける支圧力 が鉄筋に伝達されていることがわかる。鉄

図-11 ひび割れ図

筋量の少ないTYPE-12はδb、εsともTYPE-13,14に比べて大きく、補強筋量は柱脚の固定度に影響するといえる。鋼管構造指針による補強筋量の算定において降伏点応力を使用したが、全試験体とも降伏ひずみに至らず、生じた応力は同指針により算定される応力より小さいと考えられる。

5. 結 論

今回の実験で埋込み柱脚は一体式と同等の性能を有する構造として設計できることがわかった。 各パラメーターの柱脚部の固定度に対する影響および変形能力については次の知見が得られた。 (1)埋込み深さ:中柱はDe=1.0D~1.5Dの範囲では柱の終局耐力には埋込み深さの影響はない。

(2)へりあき幅:へりあき幅は初期剛性に影響するが b=20~30cmでは基礎の変形に対し差がない。
 (3)基礎補強筋:基礎のU字型補強筋は基礎コンクリートの受ける支圧力を伝達するのに有効で、

柱脚の固定度への影響が大きい。また今回の実験では鉄筋に生じた応力は、鋼 管構造指針により算定した応力より小さい。

(4)柱 軸 力:軸力の小さいものは基礎部の変形が大きく、柱軸力は基礎部の変形に影響する。
 (5)変 形 能 力:柱筋降伏時の柱頭変位量はδt=14~25mm(R=1/150~1/84rad)で、最終変形量であるδt=50mm(R=1/42rad)の塑性変形(塑性率μ=2.0~3.6;柱主筋引張り降伏時μ=1)に至るまで水平力の低下はなかった。

謝辞:本研究を行うにあたり御協力頂いた建設省建築研究所の岡本 伸氏、同 塩原 等氏、東京電 機大学の立花正彦氏、日本設計の世良耕作氏、久米建築事務所の小幡 学氏に感謝の意を表します。 参考文献

日本建築学会編 鉄筋コンクリート終局強度設計に関する資料 日本建築学会 1990.3 日本建築学会編 鋼管構造設計施工指針同解説 日本建築学会 1990.1