論文

[1200] 水和熱が RC 部材の変形と力学性状に及ぼす影響に関する 考察

伏見聡*1、佐藤良一*2、氏家勲*3、山下浩*4

1. まえがき

層状に打設される大断面の鉄筋コンクリート(RC)構造物や内巻きをして仮設構造物を本体 の構造物として利用するような大断面の構造物では、水和熱による温度応力を受けた後に外荷重 を受けることになるが、この温度応力あるいは温度ひびわれの影響が設計上取り扱われることは ほとんどないように思われる。これは、温度ひびわれの影響度が不明確であること、温度応力は 自己制限的な応力でひびわれの発生によって緩和されると考えられていること、終局曲げ破壊時 の変形に比べ温度による変形が小さくその影響は無視し得ると考えられていることなどによると 思われる。

ところで、これまでに実施された実験や解析によれば水和熱によって発生した温度勾配や温度 応力によってマスコンクリートは軸方向に加えて曲げ変形することが知られている。この現象は いわゆるコンペンセーションラインあるいはプレーン法で考慮され実用にも供されている。この 曲げ変形に起因する温度応力をより正確に評価するためには外的な拘束と共に外部拘束を受けな い自由な曲げ変形(以下、自由曲げ変形と呼ぶ)を的確に把握することが大切である。しかし、こ の自由曲げ変形を検討した例は見当たらない。

上述したことから、本論文の目的の一つは二層に打設されたはりモデルを用いて、新設のコン クリートが水和熱によって温度上昇、降下したときのはりモデルの自由曲げ変形を把握すること、 二つ目は線膨張係数の経時変化、温度の相違による断面各位置の弾性係数とクリープの相違、ク リープに及ぼす応力発生材令を考慮してどの程度自由曲げ変形を予測し得るかの検討、三つ目は この自由曲げ変形が地盤あるいは自重などによって完全に拘束されると想定しさらにその後応力 が加算される方向に外力曲げモーメントを受けたときの鉄筋応力度やひびわれ幅に及ぼす温度応 力の影響を把握することなどである。

2.実験の方法

2.1 使用材料

一層目の拘束体にはレディーミクス トコンクリートを、二層目の被拘束体 には室内配合したコンクリートを用い た。それらの粗骨材最大寸法、水セメ ント比、単位セメント量はともに20mm、 表-1 コンクリートの力学特性(標準養生)

供試体		圧縮強度 (kgf/cm ²)	引張強度 (kgf/cm ²)	弾性係数 (kgf/cm ²)
鉄筋比	被拘束体	599	50.5	40.4x10 ⁴
0.96%	拘束体	410	38.2	32. 6x10⁴
鉄筋比	被拘束体	607	43.9	36.8x10 ⁴
0.34%	拘束体	497	40.8	34. 9x10 ⁴

42.3%、380kg/m³である。標準養生したコンクリートの力学的特性は表-1に示すとおりである。 主鉄筋として用いた鉄筋は、SD295D13、SD295D16およびSD295D19であり、それらの実測弾性係数 および降伏点応力は193×10⁴、205×10⁴、214×10⁴,3496、3437、3677(単位はいずれもkgf/cm²) である。また、スターラップと拘束体の圧縮鉄筋にはSD295D10を用いた。

*1 宇都宮大学 工学部建設学科、(正会員)

*2 宇都宮大学助教授 工学部建設学科、工博(正会員)

*3 宇都宮大学助手 工学部建設学科、(正会員)

*4 宇都宮大学大学院 工学研究科建設学専攻、(正会員)

- 1179 -

2.2供試体の作製

本研究に用いた供試体の数は4体で、 いずれも2層にわけてコンクリートを打 設して製作した。拘束体となる1層目お よび被拘束体となる2層目のブロックの 寸法は50×50×540cm、15×30×540cm である。4体の内2体は、被拘束体に所 定の温度履歴(図-4参照)を与えた 後、載荷実験に供した部材である(以 下、温度部材と呼ぶ)。鉄筋は図-1 のように配筋し、その鉄筋比は、被拘 束体に対し0.96%、0.34%である。1、2 層目を一体化したRCはり部材として の引張鉄筋比は、前者の場合、0.16% である。拘束体にも配筋されている後 者の場合は、0.25%である。他の2体 は、温度履歴を受けないで載荷実験に

供した部材であり(以下、常温部材と呼ぶ)、温度履歴以外の条件はすべて温度部材と同一である。 被拘束体と拘束体との一体性はスターラップを10cmピッチで配筋することおよび拘束体の被拘 束体との打継面を遅延剤を用いてグリーンカットすることにより確保した。

打設後からのコンクリートの線膨張係数を得るため15×35×50cmの供試体を用い、温度部材の 被拘束体とほぼ同じ温度履歴を与え、上縁から10および29.5cmの温度が異なる位置で無応力計に よってコンクリートひずみを測定した。

2.3温度ひびわれ実験および計測方法

実構造物に即した温度履歴を供試体に与える方法は文献[1]によった。計測は温度、コンクリートひずみ、鉄筋ひずみ、ひびわれ幅およびたわみについて行った。鉄筋ひずみは、最大値を捕捉するため、部材中央断面の両側60cmの範囲で2.5cmピッチで計測した。コンクリートひずみと温度は中央断面から35cmと75cmの断面で図-1に示す位置で測定した。

水和熱によって生じるはり部材のたわみは、実際の場合とは異なるが、はり部材を単純支持し て外部拘束および自重の影響を除き、図-2に示す部材中央断面と両端部の3箇所で測定した。 このたわみに基づき部材の自由平均曲率を求めた。この段階で生じる応力やたわみ等は二層目の 被拘束体の温度変形が一層目の拘束体からの拘束にのみよるもので、両者を一体としたRCはり 部材としてはいわゆる外部拘束を受けないことになる。用いた変位計の精度は1/1000mmである。 鉄筋比が0.96%の温度部材以外は鉄筋ひずみと対応させてひびわれ幅を測定するため中央断面に 予めスリットを設け、ひびわれを誘発した。

2.4載荷実験および計測方法

曲げ変形したRCはり部材の変形拘束モ -メントとそれがRC部材の力学性状に及 ぼす影響を検討するため載荷実験を実施し た。載荷実験は供試体温度が室内温度に達 した後図-2に示す方法で行った。計測項 目は鉄筋ひずみ、コンクリートひずみ、ひ

びわれ幅、たわみ量である。ひびわれ幅は標点距離が10cmのπ型変位計により測定し、たわみ量 は精度1/200mm、1/1000mmで最大変位50mm、10mmの2種類の高感度型変位計により計測した。荷重に よる部材の平均曲率は等曲げ区間のたわみ量から求めた。計測方法の詳細は文献[1]を参考にした。 荷重は概ね0.5tfおきに載荷し、その都度上記の項目について測定した。

3. 自由曲げ変形

3.1自由曲げ変形の解析

水和熱によるコンクリート部材の軸方向変形と曲率は、既にJCIによって提案されているコ ンペンセーションラインあるいはプレーン法と称される方法によって求められる[2]。しかしこ の方法は、被拘束体の物性値は温度の分布の如何に拘らず断面内で一様、線膨張係数は経時的に 一定、クリープに及ぼす応力発生材令の影響は考慮しないなどの点で近似解法の立場に立つもの といえる。そこで、本論文では、断面内のひずみの直線性を仮定したうえで、温度履歴に応じた 物性値、経時的に変化する線膨張係数およびクリープの載荷時材令を考慮し、次式に示すように、 タイムインターバルt₁の終了時における重心位置y₆と、曲率φ(t_{1+1/2})を求めた。

$$y_{g} = \frac{\int_{A} \int_{C} E_{e,t_{1}+1/2}(x, y) y dA + \int_{A} E_{e} y dA}{\int_{A} \int_{C} E_{e,t_{1}+1/2}(x, y) dA + \int_{A} E_{e} dA}$$
(1)

$$\phi(t_{1+1/2}) = \frac{\int_{A_{f}E_{e,t_{1}+1/2}(x,y) \{\varepsilon_{sum,t_{1}-1/2}(x,y) + \varepsilon_{1,c_{T}}\} (y-y_{G}) dA + \int_{A_{c}E_{c}} \varepsilon_{r,c_{T}} y dA}{\int_{A_{f}E_{e,t_{1}+1/2}(x,y) (y-y_{G})^{2} dA + \int_{A_{c}E_{c}} (y-y_{G})^{2} dA} (2)$$

ここで、ε_{sum,t1-1/2}(x,y)はt_{1-1/2}までに累積されたひずみで次のように表せる;

$$\varepsilon_{sum, t-1/2}(\mathbf{x}, \mathbf{y}) = -\sigma_{c, t + 1/2}(\mathbf{x}, \mathbf{y}) J(t_{t+1/2}, t_{t}) + \sum_{j=1}^{i-1} \Delta \sigma_{c, t j}(\mathbf{x}, \mathbf{y}) J(t_{t+1/2}, t_{j})$$
(3)

 $J(t_{i+1/2}, t_i) = 1/E(t_i) + \phi(t_{i+1/2}, t_i)/E_{28} \quad (4) \quad , \quad E_{e, t_i+1/2}(x, y) = 1/J(t_{i+1/2}, t_i) \quad (5)$

また、E(t_j), E₂₈:有効材令t_j, 標準養生材令28日の被拘束体コンクリートの弾性係数、E_e: 拘束体コンクリートの弾性係数、 $\phi(t_{1+1/2}, t_j)$:t_jに載荷されt_{1+1/2}までに生じたクリープ係 数、 $\Delta \sigma_{e,tj}(x, y)$:座標x,yにおいてt_{j+1/2}からt_{j-1/2}の間に生じた応力

3.2解析に用いた物性値

図-3は最高温度が約70℃と40℃に達した二カ所の位置で、無応力計によって求めた線膨張係数の経時変化と 解析で用いた値を示したものである。実測値は各タイム インターバルにおける値であり、温度変化ひずみは各タ イムインターバルで生じたひずみを累加することによっ て求めた。初期の段階では大きな値を示し、また、応力 の反転域では急減することが認められる。

クリープ係数はCEB MC90[3]と岩城ら[4]の方法によっ て求めた。材令10日におけるクリープ係数はCEB MC90、 岩城らの場合それぞれ0.4、3.2で大きな差があった。応 力発生材令の影響はCEB MC90に従って考慮した。岩城ら はクリープ率法で定式化しており、またWhitneyの法則を

認めているので解析で はそれに従った。なお、 材令と温度に依存する 弾性係数はCEB MC90に よって求めた。

4.結果と考察

図-4は断面の幅の 中央で計測された断面 高さ方向の温度分布の 経時変化の一例を示し たものである。

図-5は図-4に示 した温度分布に加えて、 部材断面の各位置の温 度を考慮して求めた温 度勾配と実測曲率の関 係を示したものである。 打設後2時間の範囲で は温度勾配が生じてい るにも拘らず曲げ変形 はほとんど生じていな

い。これは、弾性係数の発現が十分でないことおよび拘束体に埋設した冷却パイプにより拘束体の温度もほとんど変化していないためと考えられる。曲率は、打設後2ないしは4時間の時点から生じ始め、時間の経過とともに高い増加率を示す。この現象は、種々の要因が複合した結果であるが、主として弾性係数の発現によるものと考えられる。

図-6、7は曲率の経時変化を実測値と計算値を比較して示したものである。なお、計算値は 打設後4、6時間を初期値とし、鉄筋比が0.34%の場合は実測温度を用いて計算した温度勾配か ら図-5を用いて曲率を求めた。CEB MC90のクリープ係数を用いた図-6によれば、4時間を初 期値とした場合、温度がピーク時の1.5日では実測値とほぼ一致するが温度が安定時には過小評価

する。6時間の場合は、ピーク時で過小評価し、安定温度時で 良く一致する。これに対し、初期値を4時間とし、クリープ係 数が大きい岩城らのモデルを用いれば、安定温度時において計 算値と実験値はよく一致する。しかし、いずれのクリープモデ ルを用いても温度上昇時と安定温度時の曲率は一致しない。こ れは、圧縮応力増加区間、圧縮応力減少区間および引張応力増 加区間において、クリープ係数がそれぞれ大きく異なるという 実験結果[5]を、これまでの一方向の応力を対象とした実験で得 られたクリープの値では表現しきれないことを意味していると 思われる。

上述の計算はひずみの直線性を仮定して行っているので図-8に4時間を初期値とした場合の断面のひずみ分布の経時変化

を示す。この供試体 の場合、グリーンカ ットを施し、鉄筋比 が0.95%の鉛直筋が 配置されているが、 材令7日ではひずみ の直線性が成立しな いことがわかる。こ のようなひずみ分布 は初期値を6時間と した場合でもほぼ同 様であった。同図に は、計算値も併せて 示したが、拘束体の ひずみ勾配を過小評 価していることがわ かる。以上のことか ら、本研究の範囲で はあるが、既往の物 性値を使いかつひず みの直線性を仮定す る限り、断面各位置 で温度の相違による

物性値や応力発生時の材令を考慮しても最高温度時および安定温度時双方のひずみ分布および曲 率等を同等の精度で予測することは困難のように思われる。

次に、自由変形曲率が完全に拘束されさらに外力モーメントを受けた場合の温度応力の影響を 次のように評価した。すなわち変形拘束モーメントと外力モーメントが同時に作用し、両者のモ ーメントの和をMそのときの曲率を ϕ とすれば、自由変形曲率 ϕ_r の完全拘束によるモーメント は $M_r = \{-\phi_r/(\phi - \phi_r)\}$ Mと表せる。 拘束体からの拘束に加えてこの変形拘束モーメントと外力 モーメントによって生じた鉄筋応力度を σ_r とすれば、外力モーメントがM-M_rで求まるので、 Mと σ_r の関係が得られる。ひびわれ幅も同様に求められる。

さて、図-9、10は2種類の鉄筋比の温度部材のモーメントと平均曲率の関係を、水和熱に よって生じた負の曲率を考慮し、対応する常温部材の場合と比較して示したものである。この場 合、曲率ゼロのところのモーメントが自由変形曲率が完全に拘束されときのモーメントを表す。 鉄筋比が0.96%の被拘束体のひびわれの発生は、常温部材の場合10.0tf-mで生じているのに対し、 温度部材は3.5tf-mで生じている。これは、温度部材の場合、一層目の拘束体からの拘束によって 二層目の被拘束体に温度応力が生じていたためである。

図-11、12は上述した定義にしたがって求めた外力モーメントと鉄筋応力度の関係を示したものである。鉄筋比が0.96%と大きい場合、拘束体からの拘束と自由変形曲率が完全に拘束されることによって生じる鉄筋応力度は450kgf/cm²であり、この温度応力の影響で部材が有する降 (付耐力より8%小さい荷重で部材は降伏している。このため降伏時の外力モーメントも温度部材の方が常温部材より小さかったが、その差はわずか0.5tf-mであった。これと異なり、図-12に 示す鉄筋比が0.34%の 部材の場合は、温度応 力により1800kgf/cm² の鉄筋応力が生じ、被 拘束体中の引張鉄筋の 降伏時の外力モーメン トも常温部材のそれと 比べ30%近く低下して いる。これは被拘束体 部の鉄筋比が小さくて 平均ひびわれ間隔が4 0.9cmと広く、平均剛

性がひびわれ断面のそれに対して相対的に大きいためである。

温度部材のひびわれ幅は、図-13、14に示すように、鉄筋比が0.96%の場合では、外力モ -メントが同一であっても、最大で常温部材のおよそ2倍大きい。鉄筋比が0.34%の場合にはさ らに温度応力の影響が顕著で、土木学会による曲げひびわれ式による値よりも大きかった。

5. 結論

水和熱による自由曲げ変形、既設コンクリートからの拘束に加えて自由曲げ変形が拘束される ことにより生じる温度応力、およびその温度応力がRC部材の力学性状に及ぼす影響について実 験的に検討した。本研究の範囲内で得られた主な結論は次のようである。

- 1)断面内でひずみの直線性を仮定しても物性値を適切に取り入れることにより自由変形曲率をある程度の精度で予測することは可能である。しかし、温度ピーク時と安定温度時の変形を同様の精度で予測することは出来ない。
- 2)自由変形曲率が完全に拘束された場合、温度応力がRCはり部材の鉄筋応力度やひびわれ幅に 及ぼす影響はかなり大きく、鉄筋比が小さくなるとさらに顕著になる。このため、鉄筋が拘束 体および被拘束体の双方に配筋されていても、被拘束体の鉄筋比が0.34%と小さい場合には、 被拘束体の引張鉄筋が降伏するときの外力モーメントは、常温部材のそれよりも30%近く小さ かった。

[謝辞]本研究の一部は文部省の科学研究費(試験研究(B)、課題番号03555105)の援助のもとで実施したものであり、厚くお礼申し上げます。

〈参考文献〉

- [1] 佐藤良一ほか:温度ひびわれを有するRC部材の鉄筋応力度とひびわれ挙動、コンクリート工学年次 論文報告集、Vol.14、 No.1、pp.1137-1142、1992
- [2] 日本コンクリート工学協会:マスコンクリートの温度応力研究委員会報告書、pp. 48-59、1985
- [3]CEB:CEB-FIP MODEL CODE 1990 Final Draft, July, 1991
- [4]岩城良ほか:セメントの水和熱に起因する温度応力解析手法に関する研究、鹿島建設技術研究所年 報、第28号、1980
- [5]田澤栄一・飯田一彦:硬化時温度応力の発生メカニズムについて、マスコンクリートの温度発生メカニズムに関するコロキウム論文集、pp.101-104、1982.8