報告

## [2137] 壁式 RC 造における十字形壁-床交差部の破壊性状に関す る実験的検討

Algirdas A.KUDZYS\*1·北野 敦則\*2·後藤 康明\*2·城 攻\*3

## 1.序

東欧諸国等の非地震国では、プレキャストスラブを用いた壁式現場打ち鉄筋コンクリート構造が多く用いられ ている。この種の壁式構造は、桁行方向に耐震壁(または剛性壁とも言う)が少なく、この方向の 水平抵抗は壁・スラブ交差部の面外耐力に大きく依存している<sup>1)</sup>。これらの国の壁式現場打ち鉄筋 コンクリート構造は、壁ないしは床にプレキャスト板を用いた合成部材とする事が多く、主に5~16階程度 の住宅建築に採用されている。住宅建築では、安全性が最優先に考えられる事、規格化、量産化 が求められる事、等の理由によりプレキャスト構造が最も適していると言えよう。又、住宅建築の場合、 積載荷重はそれほど高くないので、スラブには空洞スラブが広く用いられている。

日本では、壁式プレキャスト鉄筋コンクリート構造に関して、5階以下の低層建物の場合は日本建築学会に よる設計規準に基づいて設計される。また、6階建て以上の高層建築の場合は、一般化された設 計規準はまだ設定されておらず、日本建築センターの構造評価を受けて実施設計がなされている。し かし、いずれの場合にも大きな地震力に抵抗させるために壁式構造では耐震壁の面内方向の耐力 に期待して設計され、これについては多くの研究がある。

National Research Council Canadaによると、近年の地震状況から全世界で地震が起きる地域 が広がっており、過去に地震が起きなかった地域でも地震が発生する可能性が示されている。こ の意味に於いても、東欧諸国等の非地震国に見られるように、地震荷重を考慮せず設計された建 築物の水平加力時の破壊性状を明らかにすることは重要である。

本研究は、東欧諸国で一般的に用いられているハーフPCaスラブと現場打ちRC壁とから構成される壁 式構造を対象として、鉛直荷重と同時に面外水平力を受ける壁スラブ交差部の破壊性状の把握と耐 震性能の向上について実験的に検討したものである。

## 2.実験概要

(1)合成スラブについて:日本では、様々な形の合成スラブが開発され、プレキャストスラブと後打ちコンクリート の一体化を検討する実験が多数行われている。本研究で対象とする壁式構造の床スラブは、PCa板と 現場打ち空洞スラブとの合成スラブであり、壁スラブ交差部の耐力評価に先立ち、合成スラブ内の境界面の 付着性状を調べるために、7体のハーフPCaスラブを製作して予備実験を行った。

試験体は、壁スラブ試験体(幅700mm)の片側のスラブ(長さ1,100mm)を取り出し、支持部として壁厚 (200mm)と余長部(200mm)を加えたもので、スラブの先端を加力した。表-1に実験変数および実験結 果の一覧を示す。実験変数は、境界面条件(接合筋の有無、シア・コッターの有無)、配筋(シングル配筋、ダブル 配筋)、PCaスラブ筋の交差部内定着長、加力方法(単調、繰り返し)である。その結果全試験体におい て、スラブ筋降伏時までは、試験体のPCaスラブとトッピングコンクリート間の接合条件に拘らず、境界面に構造

| *1北海道大学大学院 | 工学研究科建築工学専攻 | 博士課程、Ph.D. | (正会員) |
|------------|-------------|------------|-------|
| *2北海道大学助手  | 工学部建築工学科、工修 | (正会員)      |       |
| *3北海道大学教授  | 工学部建築工学科、工博 | (正会員)      |       |



性能に及ぼす スリップ は生じず、 合成 スラブ は一体性を維持した。 壁 スラブ 交差部試験体では、主 実験においては、境界面には 接合筋を用いることにした。

(2)壁スラブ交差部試験体及 び使用材料:本研究では、壁軸 力、スラブ荷重と水平力とを受 ける階数9、10階程度の住宅

| <u> </u>                                                                                                                                  |    |        |      |    |             |           |           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|----|--------|------|----|-------------|-----------|-----------|--|--|
| 試験体名                                                                                                                                      |    | 実験     | 変数   |    | 実験結果 正/負(t) |           |           |  |  |
|                                                                                                                                           | 主筋 | 境界面    | 加力方法 | 備考 | 曲げ初亀裂       | 鉄筋降伏      | 最大耐力      |  |  |
| SL-RAIG                                                                                                                                   | 複  | 接合筋    | 繰り返し | *1 | 1.50/0.94   | 5.44/3.17 | 7.19/3.52 |  |  |
| SL-RA2                                                                                                                                    | "  | 接合筋    | 単調載荷 | "  | 1.02/ -     | 5.13/ -   | 6.20/ -   |  |  |
| SL-CA1                                                                                                                                    | "  | 無      | 繰り返し | "  | 1.05/2.38   | 5.20/3.20 | 6.77/3.31 |  |  |
| SL-CA2                                                                                                                                    | "  | "      | 単調載荷 | "  | 1.44/ -     | 6.52/ -   | 7.58/ -   |  |  |
| SL-CHA                                                                                                                                    | "  | シアコッター | 繰り返し | "  | 1.00/0.84   | 4.40/3.35 | 6.67/3.67 |  |  |
| SL-RABR                                                                                                                                   | 単  | 接合筋    | "    | "  | 1.35/2.56   | 2.43/2.56 | 2.73/3.23 |  |  |
| SLL-RAIG                                                                                                                                  | "  | "      | "    | *2 | 1.07/1.28   | 5.39/4.50 | 6.84/4.76 |  |  |
| *1. $D(a_7 \exists 7, d_3, d_5, h_1)$ 乙 3 ( $h_{mm}$ *2. $D(a_7 \exists 7, d_3, d_5, h_1)$ 乙 20 ( $h_{mm}$ =) 時分( $h_3 \exists 1 \square$ |    |        |      |    |             |           |           |  |  |

SL-:スラブ、SLL-:ロング、スラブ、RA:接合筋、CA:コンクリート、CHA:シアコッター、BR:単筋

建築物を想定している。主実験の壁スラブ交差部試験体は上 記建築物の中間階より、積載荷重によるスラブ曲げモーメントの反 曲点、及び階高の1/4の位置で取り出した十字型壁スラブ交差 部であり、3体の試験体を製作した。試験体概要を図-1に、各 試験体の実験変数を表-2に示す。

<u>表-2 主実験変数</u> (荷重:t) 277 P 試験体 壁・スラブ主筋|軸力N WSJ-1 3 5 1.65 シングル配筋 WSJ-2 ダブル配筋 30 1.65 2.40 ₩SJ-3 ダブル配筋 58 1.65 ₩SJ-3

WSJ-3'はWSJ-3と同一試験体

補強筋は、壁及びスラブ主筋にD16を、PCaスラブ内溶接金網・接合筋・壁・スラブ剪断補強筋に6φを、スラブ 上端部金網に3φを用いた。またスラブ内のボイドに、外径76mmの塩ビ管を用いた。鉄筋とコンクリートの 力学的性状を表-3、4に、配筋を図-1に示す。

(3)実験方法及び計測方法:主実験では地震時における壁スラブの応力状態を再現するために、図 -2示すような加力装置によって水平加力を行った<sup>2)</sup>。上壁頂部において、水平、鉛直、両方向に回 転可能になるように反力壁に取り付けられたアクチュエータを、先端部のコニバーサルジョイントを介して試験体 と接合し、水平方向の加力時に端モナパトの発生を防ぎ剪断力のみを伝えるようにした。水平加力は 変位制御により、繰り返しは部材角R=0.1%、0.2%で各1回0.5%、1%、2%、3%,4%で各2回、5%で1回の計13 サイクルとした。WSJ-1とWSJ-2では実構造物の固定荷重によるスラブ端モナパトを再現させるのに必要な不 足固定荷重相当分Pを、WSJ-3は不足固定荷重と積載荷重に相当する集中力Pを、それぞれのスラブ中 央に天秤型装置を用い、天秤の一方を反力床に接続し他方におもりを吊すことによって定荷重と なるようにスラブに加力した。天秤型装置は、おもりを吊す位置を調整して荷重を変化させる事が 出来る。スラブ荷重を導入した後、WSJ-1、WSJ-2には固定荷重として $\sigma_B/7.5$ (壁軸応力度)、WSJ-3には 固定荷重と積載荷重として $\sigma_B/4.5$ に相当する外部一定軸力を加えた(図-2参照)。 計測は、壁剪断力・壁水平変位・壁軸力・スラブの曲げ変形・スラブたわみ・PCaスラブ境界面スリップ変形・ スラブ剪断力、コンクリート各部の表面に埋め込んだ標点間の変位(交差部剪断変形用等)、各主筋、接合筋 及び剪断補強筋の主要位置の歪度について測定した。

## 3.実験結果及び考察

(1) 亀裂及び破壊性状: 試験体の最終亀裂状 況と剪断力Q<sub>w</sub>-層間変形角R関係のスケルトンカーブ を図-3,4に示す。

WSJ-1に於いてはスラブ付け根にスラブ荷重Pの加 力前に発生していた乾燥収縮亀裂が加力後も支 配的であり、壁スラブ交差部内の剪断亀裂は南側 で+③サイクル(R=+0.5%)、北側で+④サイクルピーク変形 時において発生したが、その後の伸展は余り見 られず、スラブの曲げ破壊で最大耐力に至った。

■SJ-2においては、スラフ<sup>\*</sup>に荷重を加えた時に スラフ<sup>\*</sup>に、多数の曲げ亀裂が生じた。水平加力時 ±③サイクルにおいて、交差部中央に剪断初亀裂が 発生し、それ以降は交差部に多数の剪断亀裂が 生じ、変形の増大に伴い大きく伸展し交差部の 剪断破壊で最大耐力に至った。

▼SJ-3においては、スラブに荷重を加えた時に、
▼SJ-2と同様にスラブに多数の曲げ亀裂が生じた。
水平加力時+③サイクルで、交差部中央に剪断初亀
裂が発生したが、壁軸力とスラブ荷重がWSJ-2に比べて大きい本試験体はその後剪断亀裂の伸展はあまり見られず、スラブ付け根の曲げ亀裂が支配的となった。①サイクル(R=±4%)に達してスラブの曲げ破壊の兆候が明らかになったので、追加実験として計算上でスラブの積載荷重に相当する分を取り除き±4%と±5%を加力した。これをWSJ-3'
試験体と称す。WSJ-3'では交差部に幾らか新しい剪断亀裂が生じ、南側においては剪断亀裂の

表-3、鉄筋の力学的特性。

|                                                                                                                   | 単位 $\sigma_y, \sigma_u, E \cdot KgI/Cm^2$ |         |      |       |          |     |      |            |                  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------|------|-------|----------|-----|------|------------|------------------|--|
| 鉄筋径                                                                                                               | 使用位                                       | 團       | σу   |       | σu       | 伸   | 伸び率  |            | x10 <sup>6</sup> |  |
| D16                                                                                                               | 主筋                                        | 1       | 3870 |       | 5780     | 0 2 | 23.2 |            | 1.75             |  |
| 6φ                                                                                                                | 接合                                        | 伤       | 393  | 30    | 5210     | 0 1 | 19.2 |            | 2.14             |  |
| 表-4 コンクリートの力学的特性<br>単位 E <sub>1/3</sub> x10 <sup>5</sup> , σ <sub>B</sub> kgf/cm <sup>2</sup> ε:x10 <sup>-6</sup> |                                           |         |      |       |          |     |      |            |                  |  |
| →殿休                                                                                                               | 7°                                        | プレキャスト部 |      |       |          |     | 後打ち部 |            |                  |  |
| 武歌14                                                                                                              | σв                                        | εmax    |      | E 1/3 |          | σΒ  | εma  | a <u>x</u> | E 1/3            |  |
| SL-RA1G                                                                                                           | 299                                       | 26      | 690  | 2     | 2.33 303 |     | 2680 |            | 2.34             |  |
| SL-RA2                                                                                                            | 306                                       | 6 28    |      | 2.11  |          | 309 | 2780 |            | 2.26             |  |
| SL-CA1                                                                                                            | 306                                       | 2620    |      | 2     | 2.25     | 320 | 298  | 80         | 2.23             |  |
| SL-CA2                                                                                                            | 297                                       | 22      | 280  | 2     | 2.28     | 308 | 26   | 60         | 2.24             |  |
| SL-CHA                                                                                                            | 306                                       | 28      | 310  | 2     | 2.11     | 303 | 224  | 40         | 2.25             |  |
| SL-RABR                                                                                                           | 314                                       | 2440    |      | 2.18  |          | 243 | 27   | 50         | 1.85             |  |
| SLL-RA1                                                                                                           | G 302                                     | 2690    |      | - 2   | 2.25     | 287 | 223  | 20         | 2.34             |  |
| WSJ-1                                                                                                             | 356                                       | 29      | 970  | 2     | 2.27     | 266 | 264  | 40         | 2.05             |  |
| ₩SJ-2                                                                                                             | 380                                       | 32      | 210  | 4     | 2.34     | 219 | 271  | 60         | 1.91             |  |
| ₩SJ-3                                                                                                             | 380                                       | 3(      | 000  | 2     | 2.30     | 274 | 23   | 30         | 1.91             |  |







幅が広がり、剪断破壊と同時に曲げ破壊で最 大耐力に至った。

図-5に各試験体の交差部剪断応力度-剪断変 形角( $\tau - \gamma$ )関係を示す。WSJ-1の場合には曲 げ破壊に至ったので、剪断破壊に至ったWSJ-2 より剪断変形角 $\gamma$ が小さい。WSJ-3において は、正加力時の剪断変形角 $\gamma$ はWSJ-2より小さ いが、WSJ-3'の①サイクルの剪断変形角 $\gamma$ は顕著 に大きくなった。

(2)曲げ終局耐力:引張鉄筋が降伏状態で圧 縮鉄筋が弾性域であると仮定した時の梁の曲 げ終局強度は、(1)式で表される<sup>3)</sup>。

$$M_{s}=m*b*d^{2}*\sigma_{B} \qquad (1)$$

ここで、終局抵抗モベル係数: m=q\*  $\{l-\gamma_e * d_{c1} - (l-\gamma_e) * k_2 * x_{n1}\}$  (2) 鉄筋係数 q=a<sub>t</sub>\* $\sigma_y / k_1 * \sigma_B * b * d$ 、 複筋係数  $\gamma_e = \gamma * u * (x_{n1} - d_{c1}) / x_{n1}$ 、 スラブ の中立軸比  $x_{n1} = x_n / d$ 、  $u=E_s * \varepsilon_y / \sigma_y$ 、 $d_{c1} = d_c / d$ 、 $\gamma = a_c / a_t$ 

PCa板と現場打ちボイドスラブとの 合成庄板の場合には図-6に示す ようにT形スラブ上板の厚さtが スラブ全せいDに比べて小さいの で、正曲げモメ小時に中立軸距離 x nは一般的にx n>tとなる。こ の場合に、圧縮コンクリートの応力分布







については、厚さ t のコンクリート圧縮応力ブロックの形状係数を k<sub>1</sub>=1 と仮定することにより、T形断面の 終局抵抗モメント係数m<sub>1</sub>を次のように表し、mの代わりにm<sub>1</sub>を(1)式代入してM<sub>s</sub>を求める。

m<sub>1</sub>=m+m'

(3)

ここで、m'=A<sub>e</sub>( $k_2*x_{n1}-t/2d$ )、mは(2)式、T形コンクリート断面比:A<sub>e</sub>=t\*(B-b)/b\*d。 図-7より、壁・床交差部が曲げ破壊で最大耐力に至った場合、接合部の両スラブ の受ける終局曲げ モメントM<sub>s</sub>とスラブ にかかる剪断力Q<sub>s</sub>、壁にかかる剪断力Q<sub>w</sub>には次のような関係がある。

$$M_{s_1}=Q_{s_1}*(l_{s_1}-j_w/2)+P_1*l_1$$
 (4)  
 $M_{s_2}=Q_{s_2}*(l_{s_2}-j_w/2)-P_2*l_2$  (5)  
交差部パネルで生じる最大曲げモメハ  
 $M_{s_u}=M_{s_1}+M_{s_2}$  (6)

+字形交差部の壁にかかる平均剪断力Q<sub>w</sub>は Q<sub>w</sub>=(Q<sub>s1</sub>\*1<sub>s1</sub>+Q<sub>s2</sub>\*1<sub>s2</sub>)/2h (7)



(3) 剪断終局耐力:交差部が剪断破壊によって最大耐力に至った場合、交差部有効せいを壁の応力 中心間距離jwと定義すると、最大耐力時剪断力Qwuは次式で表される。

$$Q_{Wu} = \frac{b_{j} * j_{w}}{(\alpha l_{s} - j_{w})/j_{s} * h/l_{s} - 1} * \tau_{ju}$$
(8)

ここで τ<sub>ju</sub>: 接合部剪断強度

bw, bs: 壁幅及びスラブ幅(本例では同等)

jw, js: 壁及びスラブの平均応力間距離(=7d/8、dは有効せい)

**b**<sub>j</sub>: 接合部有效幅=(b<sub>w</sub>+b<sub>s</sub>)/2

- h、ls:壁、合成スラブ加力点間距離の1/2
  - $\alpha$ :  $\alpha=2:p^{*}$ 7<sup>\*</sup> N配筋試験体、 $\alpha=1:y_{2}p^{*}$  N配筋試験体

ここでは、壁スラブ交差部剪断耐力  $\tau_{ju}$ を表-5欄外に示す既往の4つの十字型柱梁接合部剪断耐力式を用いてQ<sub>wu</sub>を算出したもので①~③式の定義に対応する。ただし壁式構造の交差部の場合には、交差部補強筋比  $p_w=0$ となるので、交差部終局剪断強度はコンクリートの圧縮強度  $\sigma_B$ のみに関係する。ただし、④式の接合部有効せいの定義は柱せいとしているが、本報では柱梁接合部と異なって曲げ破壊面がPCaスラブの端面位置に生じることから接合部有効せいを  $j_w$ と読みかえている点に注意を要する。

これらの結果を表-5に示す。剪断破壊したWSJ-2の最大耐力実験値は、①式及び④式による剪断 耐力計算値で比較的よく推定できる。

(4) 剪断初亀裂発生時耐力: 接合部における剪断初亀裂発生時耐力は、壁軸方向応力度 $\sigma_0$ とコンクリートの圧縮強度 $\sigma_B$ に依存する。この時の剪断応力度 $\tau_{Jc}$ は最大主応力度説、あるいはモルの破壊説を用いて次のように求まる。

$$\tau_{\rm jc} = \sqrt{\sigma_{\rm t}^{2+} \sigma_{\rm t}^{*} \sigma_{\rm 0}} \tag{9}$$

ここで、 $\sigma_t = \beta \sqrt{\sigma_B}$  ( $\beta = 1.4$ );  $\sigma_0 = N/A_w$  (N:軸力、 $A_w$ :壁断面積)。

|                                                                                             |          |           |                   | 表一             | -5 主実              | 驗                              | 結果                           | 一覧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |           | 単                               | 立:t         |
|---------------------------------------------------------------------------------------------|----------|-----------|-------------------|----------------|--------------------|--------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|---------------------------------|-------------|
|                                                                                             | 剪断初亀裂発生而 |           |                   | 耐力             | 最大                 |                                | 剪断終局耐力Qu                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               | 曲げ終局耐力Qwu |                                 | 破壞          |
| 試験体                                                                                         | 5        | 実験値       | 計算値               | exp/cal        | 「」]<br> 実験値        | 式                              | 計算值                          | exp/<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cal<br>資                                      | 計算値       | exp/cal                         | t-h"        |
| WG 7 1                                                                                      | Æ        | 2.55      | 0.00              | 0.755          | 5.42               | $\bigcirc$                     | 7.68                         | $\begin{array}{c} 0.706 \\ 0.563 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.598 \\ 0.477 \end{array}$ | 5,68      | 0.954                           | Sъ          |
| WSJ-1   負                                                                                   | 負        | 2.60      | 3.38              | 0.770          | 4,59               | $ \underline{3} $              | 8.21<br>9.34                 | $0.660 \\ 0.580$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{0.559}{0.491}$                         |           | 0.808                           |             |
| WCT 9                                                                                       | E        | 4.02      | 2 69              | 1.092          | 9.24               |                                | 9.16<br>10.19                | 1.009<br>0.907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} 0.942 \\ 0.847 \end{array}$ | 10 05     | 0.919                           |             |
| WSJ-2 負                                                                                     | 負        | 3.72      | 3.00              | 1.011          | 8.63               | $ \frac{3}{4} $                | $-\frac{8.00}{9.21}$         | 1.155<br>1.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.079<br>0.944                                | 10.00     | 0.859                           | JS          |
| WCT 2                                                                                       | E        | 4.98      | 1 60              | 1.062          | 9.47               | $  \overset{(1)}{\bigcirc} $   | 9.18                         | $\begin{array}{c}1.030\\0.828\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.944 \\ 0.758$                              | 9 82      | 0.965                           | Sp-         |
| M21-2                                                                                       | 負        | 5.13      | 4.05              | 1.094          | 8.67               | $ \frac{3}{4} $                | 9.86                         | 0.960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.879 \\ 0.753$                              |           | 0.883                           | Js          |
| ①式:還                                                                                        | 藤式       | <u>4)</u> |                   | $\tau_{ju}=7.$ | 54<br>65-0 0       | 014                            | <b>σ</b> -) • <b>σ</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≧232)<br><232)                                |           | いいたい 「「「「」」<br>「「「「」」」<br>「「」」」 | f 破壊<br>F破壊 |
| ②式:上村式5)                                                                                    |          |           | $\tau_{ju} = (0)$ | .78-0.0        | $014 \\ 016 \\ 02$ | $\sigma_{\rm B}) \cdot \sigma$ | $B \langle \sigma_B \rangle$ | $\geq 244 \\ \geq 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 244 \\ > 24$ |                                               | の時①~~     | 武                               |             |
| $\tau_{ju}=(0.02-0.0)$<br>(3)式:SRC規準 <sup>6)</sup> のRC負担項 $\tau_{ju}=2 \cdot fc \cdot \phi$ |          |           |                   |                |                    | 02 (                           | (十字型                         | の場合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\psi = 3$                                    | J         |                                 |             |

fc:コンカリートの許容明斯応力度

④式:AIJ指針<sup>7)</sup>終局剪断強度 τ<sub>ju</sub>=0.35σ<sub>B</sub>

交差部有効せいはどの試験体もj<sub>w</sub>を用いて(8)式により求めた剪断初亀裂耐力計算値と実験値の 比較を表-5に示す。当研究室で行った柱梁接合部によく適用できる引張強度推定係数β=1.4とす れば、ダブル配筋のWSJ-2と-3の実験値によく対応する。しかし、シングル配筋のWSJ-1では実験値が 著しく小さくなり、亀裂発生機構または応力算定方法について検討が必要である。

4. 結語

今回の実験では、鉛直加力と同時に面外方向に水平力を受ける壁・合成床交差部の剪断抵抗性 状に及ぼす影響を明確にすること目的として、壁・スラブの配筋及び鉛直加力条件を変数とした3 体の試験体を用いて破壊性状を検討した。水平力の増大に伴って各試験体ごとに亀裂の伸展と破 壊状況には相違が現れ、剪断破壊、曲げ破壊及びその組合わせによって最大耐力に至った。

ダブル配筋とした壁スラブ交差部において剪断破壊した試験体の剪断終局耐力は、柱梁接合部の評価式を基にして壁の有効せいを用いることで推定できること、剪断破壊後の耐力劣化は少なく、面外抵抗型壁式構造においてもダブル配筋が効果的であること、などが明らかになった。

なお壁式交差部の破壊機構を把握するため、他の影響要因を変数とした載荷実験及びRC弾塑 性FEM解析を続行中である。

<sup>【</sup>謝辞】 この実験を行うにあたり、横山隆明君(北海道大学大学院修士課程)に御協力頂いた ことに深く感謝致します。

<sup>【</sup>参考文献】[1]Kudzys, A.P., Jonaitis, B.B., Kudzys, A.A.: Behaviour of New Type Walls and Joints Under Monotonic Loading, Proceedings of the Third International Sy mposium on Wall Structures, Warsaw (Poland), Vol.2, pp.43-47, Jun.1984 [2]城 攻·柴田 拓二ほか: 十字型RC柱·梁接合部のディテールと破壊性状の関係、I実験概要・破壊性状及び耐力、日 本建築学会北海道支部研究報告集、構造系、No56、pp.185-192、1983、3 [3]日本建築学会:鉄筋コンクリ -ト構造計算規準・同解説、1988 [4]小倉 弘一郎・関根 正孝:鉄筋コンクリート梁・柱接合部に関する研 究の動向、コンクリート工学、Vol.No9、pp.3-15、1981、9 [5]上村 智彦:鉄筋コンクリート構造の梁・柱接合部の 終局剪断強度について、日本建築学会学術講演梗概集(関東)、pp.1155-1156、1975、10 [6]日本建築 学会:鉄骨鉄筋コンクリート構造計算規準・同解説、1987 [7]日本建築学会:鉄筋コンクリート構造物の終局強度 型耐震設計指針・同解説、1992