論文 定着用膨張材の膨張圧を側圧として用いた簡易三軸圧縮試験法

原田哲夫*1·徳光 卓*2·山崎竹博*3·松田 浩*4

要旨:500kgf/cm²を越す高膨張圧および液圧的圧力伝播という定着用膨張材の特性を側 圧荷重として利用した簡易三軸圧縮試験法を考案した。モルタル円柱供試体の周りに鋼 管をセットし、供試体と鋼管のすきまに定着用膨張材を充填し、鋼管が所定の降伏膨張 圧に達した段階で、軸方向に圧縮荷重を載荷し、三軸拘束下のモルタルの挙動を調べる 方法である。実験の結果、降伏時の膨張圧(側圧)は一定のまま載荷でき、また、軸方 向力をほとんど鋼管に作用させず、試験可能であることがわかった。さらに、この試験 方法によって、側圧を変化させたモルタルのコンファインド効果について調べた。 キーワード:三軸圧縮試験、膨張圧、コンファインド効果、定着用膨張材

1. まえがき

筆者らは静的破砕剤の膨張圧挙動に関して、これまで行った基礎的研究の中から500kgf/cm²を 越える高膨張圧が発生し、その伝播は液圧的であるなどの知見を得ている[1]。その特性を利用し た研究として、これまでに「定着用膨張材を用いた連続繊維緊張材の定着法に関する研究」、 「ケミカルジャッキに関する基礎的研究」等を実施してきている[2],[3]。ここで、定着用膨張材 とは、静的破砕剤をベースに連続繊維緊張材の定着用として、膨張圧の発現特性、流動性、材料 分離抵抗性等の改善が図られた材料である。

さて、本研究は上記のような膨張圧特性の利用に関する新たな視点からの研究である。通常、 コンクリートあるいは岩盤の三軸圧縮挙動を調べるためには、油圧制御型の高圧三軸圧縮試験機 が用いられている。本研究の第一の目的は、この高圧三軸圧縮試験機の側圧を定着用膨張材の膨 張圧に置き換えて、上記の試験が実施できないかどうかを検討すること、すなわち、高膨張圧を 利用した簡易三軸圧縮試験が可能であるかどうかの検討である。

一方、例えばコンファインド効果を主眼においたアンボンド型鋼管コンクリートの研究からも わかるように、膨張圧による側圧荷重を受けた円柱供試体は、三軸拘束効果によって耐力の向上 とともに、靭性の向上も期待できる[4],[5]。予め膨張圧を拘束圧として積極的に作用させること により、コンファインド効果を高めた補強工法への展開も考えられる。これを確認することを第 二の目的として、今回は弾性体と考えられるモルタルについて、膨張圧による耐力向上および変 形挙動に関する基礎的な性状の把握を行った。

2. 簡易三軸圧縮試験方法

今回考案した簡易三軸圧縮試験法の概要は以下の通りである。図-1のように、円柱供試体の 周りに鋼管をセットし、供試体と鋼管のすきま(5mm程度)に定着用膨張材を充填する。鋼管

- *1 長崎大学助教授 工学部構造工学科、工博(正会員)
- *2 (株)富士ピー・エス 本店技術部 (正会員)
- *3 九州工業大学助教授 工学部設計生産工学科、工博(正会員)
- *4 長崎大学助教授 工学部構造工学科、工博(正会員)

が所定の膨張圧(作用させたい側 圧)に達した段階で、アムスラー 試験機を用いて軸方向に圧縮荷重 を載荷し、三軸拘束下の円柱供試 体の挙動を調べる、いたって簡便 な方法である。このとき、問題と なるのが側圧の管理である。膨張 圧に関するこれまでの研究から、 鋼管が弾性のうちは、膨張圧は増 加するが、鋼管の降伏圧力に達し た段階で、膨張圧は降伏時の膨張 圧を保ったまま一定となることが

わかっている[1]。この性質により、軸方向荷重の載荷によって膨張圧が変化しなければ、側圧一 定とした試験方法となりうる。降伏圧力、すなわち側圧は鋼管の材質と肉厚を定めることにより 容易に調整できる。降伏は鋼管に貼付した歪ゲージにより判定する。なお、膨張圧は温度の影響 を受けるので、膨張圧の適正な管理には、恒温室(20~25℃)にて実施することが望ましい。

降伏膨張圧の高い鋼管を用い、降伏膨張圧より低い膨張圧のときに軸圧縮力を作用させた場合、 軸圧縮力のある段階で供試体が体積膨張を生じ始めると軸圧縮力の増加に伴って拘束圧が増加す ることになる。この場合は、能動的拘束から受動的拘束への載荷経路をもつ試験法となる。ここ で能動的拘束とは、膨張圧のように軸方向力やそれにともなう変形とは独立して任意に与えるこ とのできる拘束力であって、受動的拘束とは、軸方向荷重の増加に伴う供試体の体積膨張に対し て鋼管等でそれが拘束されているために発生する拘束力をいう。なお、膨張圧の上限はこれまで の実験結果から判断しておよそ1000kgf/cm²であり、それまでの側圧であれば制御可能と思われる。

3. 実験概要

に伴う側圧の増加量を測定した。

膨張圧拘束用鋼管の降伏圧力と、降伏後の挙動および膨張圧の挙動を 調べる目的で、図-2に示すような二重管試験を実施した。膨張圧は内 部に配置した鋼管(内管)の内周面に貼付した直交ひずみゲージのひず み値より算出した。次に、市販の早強性無収縮モルタルでφ5×10cm の供試体を作製し、鋼製型枠に入れたまま28日間気中養生した。供試 体表面には30mmのひずみゲージを直交して貼付し、供試体端面および側 面にテフロンシートを巻いた後、載荷板も併せて膨張圧拘束用鋼管の中

央部にセットした。その後、水比27%の定着用膨張材を鋼管と供試体の隙間に充填した(図-1)。鋼管降伏後、あるいは所定の膨張圧発現後、アムスラー試験機にて軸圧縮力を載荷し、 モルタルおよび鋼管のひずみ挙動、最大耐力等を調べた。 鋼管の降伏は、外周に貼付したひずみゲージにより判断した。外管の肉厚が厚いものについては、図-3のように側面にダイヤフラム型圧力計をセットし、膨張圧および載荷

2 二里官試験による 膨張圧の測定

図-3 厚肉鋼管使用時の側圧測定方法

-492-

4.実験結果および考察

4.1 鋼管の降伏と膨張圧の挙動

膨張圧と外管の円周方向ひずみの関係を図-4 に示す。降伏圧力に達した後には、ひずみが一定 となっていることがわかる。また、薄肉鋼管の降 伏膨張圧 p, は、式(1)によって求めることが でき、計算結果と実験結果はほぼ一致した。

$$p_{y} = \sigma_{y} \cdot (k-1) \qquad (1)$$

ここに、鋼管の降伏強度 σ, および外内径比 k (外径/内径)である。今回拘束用として使用し た鋼管は、STKM13Aで、旋盤加工によって

拘束用鋼管の寸法と最大耐荷力 表 - 1

図 - 4

	供試体番号	外径 (mm)	内径 (mm)	最大耐荷力 (t1)
A	1	64.2	60.0	32.4
	2			29.4
	3			30.0
	4			23.0
	5			24.2
В	1	68.8	60.0	42.8
	2			42.0
	3			37.3
	4			37.5
С	1	94.0	60.0	40.5
	2			41 0

-0.5

4.2 膨張圧によるモルタルのひずみ挙動

図-6は膨張圧の負荷にともなう軸方向ひずみ ε czと円周方向ひずみ ε cθの比をプロットした もので、膨張圧の増加にかかわらず約0.5で一定である。今回使用したモルタルの一軸圧縮試 験時のひずみの挙動は、図−7(a), (b)に示すように、破壊までほぼ直線的であって、弾 性体とみなしてよいと考えられる。ただし、供試体載荷面にはグリースを塗布したテフロンシー

A-2

Ω

400 -1500 ε _{cz} (×10⁻⁶) Stress (kgf/cm²) -500 0 -500 -1000 -1500 100 200 0 300 $\varepsilon_{\rm cz}$ (×10⁻⁶) ε_{cθ} (×10⁻⁶) (a)応力と軸方向ひずみの関係 (b)軸方向ひずみと円周方向ひずみの関係

図-7 一軸圧縮試験におけるモルタル供試体のひずみ挙動

トをはさみ、摩擦を低減している。 いま、膨張圧 p の増加にともなう $\varepsilon_{cz} / \varepsilon_{c\theta}$ の値 は、モルタルのポアソン比を ν_{c} とすれば、式(2)

$$\varepsilon_{cz} / \varepsilon_{c\theta} = -2 \nu_{c} / (1 - \nu_{c}) \qquad (2)$$

で与えられ、圧縮試験から求めた $\nu_{\circ}=0.23$ を 代入すれば、図-6の実験結果とほぼ一致する。

4.3 鋼管へ作用する軸方向力の影響

テフロンシートによって摩擦の影響は極力除去し ているものの、載荷にともなって鋼管に軸方向力を 生じることが懸念される。いま、拘束圧260kgf /cm²まで膨張圧を作用さたBタイプの鋼管は降伏に 至っていないので、鋼管表面の直交ゲージのひずみ 値を用いて、弾性計算により軸方向荷重を計算した。 図-8に載荷荷重(N)と鋼管軸方向力(N2)と の関係の一例を示した。わずかに鋼管軸方向力が生 じているものの、載荷荷重にともなう増加はみられ ない。鋼管軸方向力の増加分、見かけ上最大耐力は 増加することになる。

4.4 載荷にともなう側圧の増加について まず、拘束鋼管を降伏させた時の側圧(降伏圧力) が一定のまま、軸方向力を載荷できるかどうかにつ いて検討する。ここでは、モルタル供試体のひずみ に着目して考察する。軸方向応力を作用させても、

側圧 p が一定のままであるならば、 ε_{cz} および $\varepsilon_{c\theta}$ は載荷による軸方向応力 σ_z のみに影響されることに なるので、($\varepsilon_{c\theta} + \nu_c \cdot \varepsilon_{cz}$)の値は0となるは ずである。仮に側圧の増加 Δp が生じれば、式(3) で求められる。

$$\Delta p = \frac{\text{Ec} (\varepsilon_{c\theta} + \nu_{c} \cdot \varepsilon_{cz})}{(1 + \nu_{c}) (1 - 2\nu_{c})} \quad (3)$$

図-9に軸方向荷重と式(3)で計算した増加圧 カムpとの関係を示した。後述するように、モルタ ル供試体の体積ひずみが収縮から膨張へ変化したと 考えられる荷重まで、ほぼムp=0となっているこ とがわかる。

図-10は肉厚を厚くし、降伏膨張圧を高めた鋼 管Cを用い、予め膨張圧150kgf/cm²を作用させ た段階で、軸圧縮力を載荷した場合の一例である。 側圧の増加は、側面に取り付けたダイヤフラム型圧 力計で測定した。モルタルのひずみから計算される 膨張圧は、わずかながら負の方向に変化しているが、 ダイヤフラム型圧力計による圧力は軸圧縮力30tf あたりまでほぼ0で、その後増加しはじめている。 この側圧が増加しはじめる荷重は、膨張圧150kgf /cm²の能動的拘束圧を作用させて軸圧縮力を載荷し たせた供試体の最大耐力にほぼ等しい(表-1参照)。 この時点からモルタルの体積膨張を生じ、受動的拘 束状態となって側圧が増加するものと推察され、図 -10での増加圧力は約250kgf/cm²で、軸圧縮 力は40tfまで上昇している。

4.5 モルタル供試体の変形挙動 および最大耐力

図-11に載荷荷重とモルタルの軸方向ひず み、円周方向ひずみの関係を示した。拘束膨張 圧が大きくなるに伴って耐力も上昇し、靭性も 向上していることがわかる。4.4で考察した ように、鋼管Cを用いた供試体では鋼管Aの供 試体に対し、能動的拘束状態から受動的拘束状 態に変化したと考えられる分の耐力の上昇をみ ることができる。図-12には、体積ひずみど 軸方向ひずみの関係を示した。体積ひずみが、

収縮から膨張へ変化する点はいずれの供試体でも明 らかに現れており、例えば図 -10の場合のC供試 体の側圧が増加する点は、図 -12のA供試体の変 曲点と一致する。次に、表 -1に示す最大耐力から 供試体の断面積で除した最大強度(Fc)と拘束圧 (p)との関係を図 -13に示す。ここで、鋼管の 肉厚が大きく途中で受動的拘束状態に変化する場合 には、初期側圧に増加側圧を加えた拘束圧として処 理した。結果はほぼ直線で近似でき、最小自乗法で 処理した結果、k = 5.56であった。

 $Fc = fc + k \cdot p \qquad (4)$

f cは一軸圧縮強度で449kgf/cm²であった。拘束係数と呼ばれているkは、文献4),5)等 で得られているk = 4よりも大きめである。これは、文献ではアンボンド型鋼管についていわゆ る受動的拘束によるコンファインド効果であるのに対し、本研究では膨張圧を作用させる能動的 拘束効果であることあるいは鋼管軸方向力の影響等が考えられる。しかしながら、今回は簡易三 軸試験法の検討が主であったために、コンファインド効果に関するデータ数が少なく、本試験法 の改良も含めデータの蓄積を図ってゆく所存である。

5.まとめ

定着用膨張材の膨張圧を側圧として作用させる簡易三軸圧縮試験方法を考案し、今回の実験か ら得られた知見をまとめると以下のようである。

(1) 拘束鋼管を降伏させた状態で軸方向力を作用させても側圧の増加はなく、鋼管軸方向力の 影響はわずかに入るものの、側圧一定の三軸圧縮試験とすることができる。

(2)能動的拘束のみを受ける場合でも、能動的拘束圧から途中で受動的拘束に変化する場合も 含めて、強度と拘束圧(膨張圧)の関係は Fc=fc+k・p で近似したところ、k=5.56 を得た。この値はアンボンド型鋼管の研究で得られている拘束係数4よりもやや大きい。

参考文献

1)原田哲夫・副田孝一・出光隆・渡辺明:静的破砕剤の膨張圧測定法と膨張圧の諸性質、土木 学会論文集、No. 478/V-21、pp. 91-100、1993.11

2)原田哲夫・ミョーキン・徳光卓・出光隆:定着用膨張材を用いたFRP緊張材の定着機構の
一考察、コンクリート工学年次論文報告集、Vol. 16、No. 2、pp. 1135-1140、1994.6

3) 原田哲夫・松田 浩:静的破砕剤を用いたケミカルジャッキによる PC 部材の接合法、コン クリート工学年次論文報告集、Vol.14、No.1、pp.177-182、1992.6

4) 肖 岩・富井政英・崎野健治:コンファインドコンクリートの3軸圧縮挙動に関する実験的 研究、コンクリート工学論文集、Vol.2、No.1、pp.1-14、1991.1

5) 佐藤孝典:円形断面の充填鋼管コンクリート構造におけるコンファインド効果のメカニズム とそのモデル化、日本建築学会構造系論文集、第452号、pp.149-158、1993.10

-496-