論文 モデル骨材を用いたモルタルのコンシステンシーに関する 基礎的研究

近田孝夫*1·前田悦孝*2·松下博通*3

要旨:骨材表面に余剰ペーストの膜が形成され、その膜厚によりコンクリートの流動 性が定まるという余剰ペースト膜厚理論の考え方をモデル細骨材を使用したモルタル のフロー試験結果に適用し、フロー値が使用細骨材の粒度構成および平均粒子径によ らず、余剰ペースト膜厚/細骨材粒子径比(以下、膜厚比と称す。)だけでほぼ定ま ることを確認した。また、降伏値は膜厚比の低下に伴って緩やかに増加する領域と急 激に増大する領域があり、降伏値が急増し始める膜厚比はモルタルのフロー値が約15 0 程度になるときの膜厚比に対応することなどを報告した。

キーワード:余剰ペースト膜厚理論、モデル細骨材、フロー値、流動曲線、降伏値

1. はじめに

フレッシュコンクリートをセメントペーストと骨材の2相材料と考えると、充塡状態の骨材間 空隙がペーストで満たされ、さらに余剰のペーストが存在することによって骨材が分散される。 余剰ペースト膜厚理論では、骨材表面に余剰ペーストの膜厚が形成されると仮定し、膜厚とペー スト性状がコンクリートの流動性を定めると考えられている[1]。

筆者らは、本理論の配合設計への適用化を検討しており、単一粒度細骨材を使用したモルタル のフロー値は余剰ペースト膜厚(以下、δと略す。)のみでなく、細骨材粒子径(以下、dと略 す。)との比であるδ/dによって定まることを報告した[2]。

本研究は、この考え方を連続粒度骨材を使用した系に拡張するための基礎的検討として、1~ 3種類の単一粒度のガラスビーズから構成されるモデル細骨材を使用し、粒度構成や平均粒子径 を変化させたモルタルのフロー値および流動曲線を測定し、δ/dとの関係を検討した。

2. 実験概要

セメントは、普通ポルトランドセメントを使用した。比 重は3.15、粉末度は3550㎡/gである。図-1にレーザー回 折型粒度分析計を用いて測定した粒度曲線を示す。累積通 過重量90%に相当する粒子径(以下、d₉₀と略す。)は、 41.3 μ mであった。細骨材は、表-1に示す5種類の単一 粒度のガラスビーズを単味または表-2に示す組み合わせ で使用した。ガラスビーズの比重はいづれも2.47である。 表中に示した粒子径di およびdavは面積体積平均粒径で ある[3]。以下、本報告では、各材料を表-1~2の中の 記号で示した。また、単一粒度細骨材を単味で使用した場

^{*1} 新日鐵化学㈱技術研究所高炉センント技術センター 主任研究員(正会員)

研究員(正会員) 工博(正会員)

^{*2} 新日鐵化学㈱技術研究所高炉セメント技術センター 研究員(

^{*3} 九州共立大学教授 工学部土木工学科

合、2種類または3種類 混合したもの使用した場 合をそれぞれ総称して単 一粒度系、二粒度混合系、 三粒度混合系と称した。

図-2に、本実験にお ける骨材粒子径と膜厚に 関する考え方を三粒度混

表-1	単一	·粒	度細	骨	木
-----	----	----	----	---	---

記号	粒度 ^{*1} (mm)	di ^{*2} (mm)	実積率 (%)		
G1	0.15~0.30	0.216	62.5		
G2	0.30~0.60	0.436	63.2		
G3	0.60~1.18	0.833	62.6		
G4	1.18~2.36	1.702	63.5		
G5	2.36~4.47	3.446	63.1		
*1ふるい目の開き *2粒子径					

合系の場合についてモデル的に示す。各細骨材の表面に形成される余剰ペースト膜厚δi は細骨材粒子 径di に比例し、大きな細骨材には大きな膜厚が形 成され、小さな細骨材には小さな膜厚が形成される とした。本実験では、その比例係数をδ/dと称し

、δ/d=約0.01~0.3 となるようにモルタルの配合を定め た。尚、各混合細骨材の平均粒子径はdavと称し、di と区 別した(単一粒度系ではdi=dav)。 W/Cは35%とした。

モルタルの練混ぜ方法、フロー試験の方法は「JIS R 5201」 に従った。但し、練混ぜ量は、1.3 ℓとした。流動曲線は、 音叉型振動式粘度計を使用し[4]、ずり応力τを31.8Pa/min の勾配で95.3Paまで上昇させて測定した。

3. 実験結果および考察

3.1 *δ*∕dとフロー値の関係

試験結果の一例として、G1~G5を単味で用いた 単一粒度系、G1とG5を組み合わせた二粒度混合系 (以下、G1-G5系)のδ/dとフロー値の関係を 図-3に示す。図中に[↓]を記したプロットは、 フロー試験時にモルタルの一部が崩れたり、亀裂 が生じるなどモルタルの広がり方が一体性に欠け る様子が観察されたことを示す。

単一粒度系、二粒度混合系ともに、 δ /dが約 0.02~0.1の範囲においては、 δ /dの対数に従ってフロー値はほぼ直線的に変化し、細骨材のd avが0.83mmより大きいものは δ /dとフロー値の 関係がほぼ一致した。しかし、G1,G,G15-A など davが小さいものは、 δ /dが同一であってもd av \geq 0.83mmの細骨材を使用した場合よりフロー値 が小さく、 δ /dが低下するほどその差は拡大し た。一方、davが大きいG5,G15-Cなどは δ /dav =0.02~0.03以下でフロー値の低下割合が小さく、 表-2 2粒度及び3粒度細骨材

系列	組み合わせ			混合割合(%)			dav				
	第一 粒度	第二 粒度	第三 粒度	記号	第一 粒度	第二 粒度	第三 粒度	(mm)	実積率 (%)		
2 粒度	G1 C			G15-A	70	30	-	0.3	70.3		
		G5	-	G15-B	20	80	-	0.86	72.1		
				G15-C	7	93	-	1.68	66.4		
	G2 G5	G2	i2 G5		G25-A	70	30	-	0.59	69.1	
				G5	_	G25-B	45	55	-	0.84	73.4
							G25-C	15	85	-	1.69
				G25-D	5	95	-	2.56	64.7		
	G3	G5	-	G35-C	33	67	-	1.69	70.2		
	G4	G5	-	G45-E	40	60	-	2.44	66.3		
3粒度	G1	G3	G5	G135-B	14	30	56	0.85	74.6		
	G2	G4	G5	G245-C	11	30	59	1.69	70.1		

* 混合細骨材の平均粒子径

図-2 膜厚 δ と粒子径 d の関係

44 84 75

N140

モルタルの広がり方が一体性に欠ける場合が多く 観察された。以上のように、davの違いがフロー 値に及ぼす影響は単一粒度系、二粒度混合系で傾 向が一致した。

図-4に単一粒度細骨材と二粒度混合細骨材お よび三粒度混合細骨材のうちdavがほぼ等しい場 合の δ /dとフロー値の関係を比較した。 δ /d とフロー値の関係は二粒度および三粒度混合細骨 材ともに単一粒度細骨材の場合と一致し、davが 等しければ、粒度構成によらず δ /dだけでフロ ー値がほぼ定まる結果となった。

以上の結果を踏まえフロー値がδ/dにより定 まる条件について検討した結果を次に述べる。

フロー値が δ /dのみで定まる場合は、davが 変化しても、フロー値が同じであれば δ /dも同 じ値となる。そこで、各細骨材を用いたモルタル が同じフロー値をとるときの δ /dの値(以下、

 $[\delta/d]_{F}$ と称す。)を求め、davとの関係を 調べた。図-5にdavとフロー値 200, 190, 170 に対応する $[\delta/d]_{F}$ の関係を示す。図中の直 線は、d90/davの値を示しており、単一粒度系 では、この直線より上側で余剰ペースト膜厚 δ が d90(=41.3 μ m)より大きくなっている。

 $[\delta/d]_{F}$ は、直線より上側ではdavが変化 してもほぼ一定となり、フローが δ/d により定 まる範囲は二粒度,三粒度混合系と単一粒度系で 一致した。 $\delta > d9000$ とき単一粒度系のフロー値 が δ/d のみで定まることは既報でも示したが[2] 、二粒度,三粒度混合系でもdavに対応する平均 膜厚を δ av(=dav× δ/d)とすると、 δ av>d90 のときフローが δ/d により定まる結果となった。

3.2 流動曲線の測定結果

測定結果の一例として、G2を単味で使用して δ /dを 変化させたときの流動曲線とセメントペースト単味の流 動曲線を図-6に示す。 δ /dの増加によりモルタルの 降伏値は低下し、小さなずり応力で流動し始めるように なるが、流動曲線の傾きは、 δ /dの増加に伴ってむし ろ大きくなる傾向がある。このため、 δ /dの大きいほ うが常にずり速度が大きいとは限らない。また δ /d = 0.1, 0.2 では、セメントペースト単味の形状に類似し、

流動曲線の傾きがずり応力の大きさによって複雑に変化するようになった。

一方、δ/dがあまり小さい場合には、δ/d=0.01, 0.02 の場合のような流動曲線が測定されており、これらは振動式粘 度計の感応板と試料の間に滑りが生じたり、細骨材粒子どうし の固体間摩擦などの影響で感応板の振幅増加が不安定になるこ とが原因と考えられる。このような流動曲線はモルタルの粘性 流動をとらえたものではないと考えられる。

図-7は、単一粒度系の流動曲線および各種細骨材のうちd avが約0.83mmと1.70mmに等しいものの流動曲線を比較したもの である。単一粒度系では、 $\delta / d = 0.1$ のときは、 $G1 \sim G5$ の降

伏値と比較的ずり応力の小さい範囲における流動曲線はほぼ一致した。しかし、davが小さい場合ほど δ /dの減少に伴う降伏値の増大が大きくなっており、 δ /d=0.04、0.02ではdavによる流動曲線の違いが明瞭になった。

d avが約0.83mmまたは約1.70mmに等しい各種細骨材を比較した場合においても、 δ /dの減少 に伴って各流動曲線の違いが明瞭になるが、d avが異なる場合に比べて流動曲線の差異は小さく 、特に d av=約1.70mmの場合は、 δ /d = 0.04以上では各流動曲線がほぼ一致している。

これらの傾向は、3.1にて述べたフロー値の場合と定性的には共通する点がある。そこで、 3.3において各流動曲線の特徴をδ/dやフロー値とより定量的に関連付けることを試みた。 3.3 δ/dと降伏値、フロー値の関係

本実験で得られた流動曲線は、上述したように、降伏後のずり応力とずり速度が直線関係でない場合が多く、ビンガム体として塑性粘度を求めるには問題ある。一方、降伏値については、図 -8に示すように、降伏後の比較的ずり速度の小さい範囲(20~50(1/s)以下)では、いずれの 流動曲線においても、ずり応力とずり速度が直線関係になる領域が認められ、降伏値は、この部 分の直線と縦軸との切片として機械的に定めることができる。従って、本研究では、このように して求めた降伏値τ₁について以下の検討を行った。

図-9は、それぞれ、単一粒度系、davが約0.83mmの場合、davが約1.70mmの場合において、 $\delta \neq d$ と降伏値の関係を比較したものである。これ

らの図において τ_f =80Paの線上にあるプロットは、 流動曲線の測定において、降伏値が80Pa以上であっ て、振動式粘度計の感応板と試料の間に滑りが生じ たと考えられるものである。

単一粒度系では、 $G1 \sim G5$ のいずれを使用した場合 でも、 τ_f は δ /dの減少に伴って漸増し、 δ /d がある値より小さくなると急激に増大した。降伏値 が増大し始める δ /dは細骨材のdavが小さいほど 大きく、G1, G2, G3, G4, G5の順となった。

単一粒度細骨材と二~三粒度混合細骨材を用いた 場合をdavがほぼ等しい条件で比較すると、 τ_f が 急激に増大し始める δ /dは、davが約0.83mmの場 合は0.03~0.04であり、davが約1.70mmの場合は0. 02~0.03程度となっており、粒度構成が異なってい てもdavが等しければ、降伏値が増大しはじめる δ /dの大きさはほぼ同程度になると考えられる。一 方、 δ /dがこれらの値より小さい範囲では細骨材 の種類によって τ_f の増加割合に差異が認められる ようになるが、davが約0.83mmと約1.70mmのどちら の場合も単一粒度細骨材を単味で使用した場合に比 較して、二粒度または三粒度混合細骨材を使用した 場合の方が τ_f の増加割合が小さくなった。 これ らの結果を図-3、図-4と比較すると、降伏値が

増大し始めるδ/dは、フロー値が 140~160 とな るδ/dに対応している。

図-10に降伏値 τ_{f} とフロー値の関係を示す。

[↓] を示したプロットは、モルタルの広がり方が 一体性に欠けたり、流動曲線の測定の際に感応板と 試料の間に滑りが生じたと考えられるものである。 また、τ r =100のプロットは最大ずり応力でも変形 が測定されなったものである。

降伏値 τ_f が約 5~20 pa およびフロー値が約 1 50~200 の範囲では、フロー値は降伏値 τ_f の増加

に従って低下するが、降伏値 τ r が20Pa以上では、フロー値はあまり低下しなかった。

ここで、図-10と図-9を比較すると、図-10でフロー値が降伏値に従って直線的に低下する 範囲は、図-9において降伏値 τ , が δ /dの減少に伴って漸増した範囲に対応する。一方、降 伏値 τ , が20Pa以上でフロー値があまり低下しない範囲は、降伏値 τ , が急増し始める δ /d以 下の範囲に対応しており、流動曲線の測定の際に感応板と試料の間に滑りが生じるなど粘性流動 とは異なる挙動が観察されるものや本実験の最大ずり応力の範囲では変形が測定されないものが 多く、フロー試験でもモルタルの広がり方が一体性に欠ける場合が多く観察されている。

これらのことから、フロー値が約150 以下になると、フロー値の変化はモルタルの性状の変化 をあまり反映しなくなると同時に、モルタルの変形のメカニズムもまたフロー値が約150 に対応 するδ/dの前後で大きく変化するのではないかと考えられる。

4. まとめ

各種単一粒度のガラスビーズから構成されるモデル細骨材を用いたモルタルの流動性に関し て本研究で得られた結果は以下の通りである。

- (1) フロー値は、粒度構成によらず δ /dと平均粒子径davによってほぼ等しく定まり、また、 davに対応する平均膜厚を δ avとすると、 δ av>d90であればフローは平均粒子径davによら ず δ /dのみで定まると考えることができる。
- (2) 細骨材の粒度構成や平均粒子径による流動曲線の違いは、δ/dの減少に伴って明瞭になり、 その違いは降伏値の増加や流動曲線の傾きの変化の違いとして把握された。また、davが異な る場合に比較して、davは同一で粒度構成が異なる場合の方が流動曲線の差異が小さくなった。
- (3) 降伏値 τ_{f} は、 δ / dの低下に伴って漸増し、 δ / dがフロー値が150 程度に対応する値よ り小さくなると急激に増大した。降伏値 τ_{f} が急増し始める δ / dの値は d avが小さいほど大 きくなるが、d avが等しい場合には粒度構成が変化してもほぼ同程度となった。
- (4) 降伏値 τ_{f} = 約 5~20 pa の範囲で、フロー値は約 150~210 に変化した。 τ_{f} >20Paでは、 フロー値はあまり低下せず、モルタルの広がり方が一体性に欠ける状況が多く観察された。

参考文献

- 1) T.C. Powers : The Properties of Fresh Concrete, Jhon Wiley and Sons, Inc., 1968.
- 2) 前田、近田、松下:単一粒度細骨材を用いたモルタルのコンシステンシーに関する研究、コンクリート工学年次 論文集、Vol16, pp. 467-472, 1994.
- 3) 徳光善治:粉体のつめこみについて、粉体工学、pp29-34、1965.9
- 4) 石渡ほか:音叉型振動式粘度計を用いたセメントヘーストの流動解析、第46回セメント技術大会講演集、 pp152-157、1992.