論文 せん断補強筋を有する RC はり断面のせん断耐荷力評価に関する 解析的研究

中村光*1·檜貝勇*2

要旨: せん断補強筋を有する RC はり断面のせん断耐荷力を、拡張した修正圧縮場理論 に基づく解析手法により解析的に評価した。せん断補強筋が降伏する場合には、修正ト ラス理論によりせん断耐力を概ね妥当に評価できることを示した。さらに本手法により、 ウエブ圧縮破壊耐力が求められることを示し、その耐力の解析的検討を行った。 キーワード: せん断耐力、拡張した修正圧縮場理論、トラス理論、ウエブ圧縮破壊

1. はじめに

せん断補強筋を有する RC はりのせん断耐力としては、土木学会コンクリート標準示方書では、 せん断補強筋が降伏する場合に対しては、トラス理論 (Vs) に斜めひび割れ発生時のせん断耐力 (Vc)を単純に加算した修正トラス理論 (Vc+Vs) が用いられ、降伏しない場合に対しては、ウエブ 圧縮破壊耐力式が与えられている。しかし、これらいずれの値に対しても、その理論的必然性は 明らかではなく、せん断耐力に及ぼすせん断補強筋の効果は必ずしも明確にされていないのが現 状である。

そこで本研究では、著者らが開発した拡張した修正圧縮場理論に基づく解析手法¹⁾を、せん断 補強筋を有する RC はり断面に適用することで、解析的にせん断補強筋がせん断耐力に及ぼす効 果ならびに現在十分な実験的裏付けがされていないせん断補強筋を多量に配置した場合に生じる ウエブコンクリートの圧縮破壊耐力を評価することを試みた。

2. 拡張した修正圧縮場理論

(1) 解析方法

拡張した修正圧縮場理論に基づく解析方法は、Collins らにより提案された修正圧縮場理論²⁾ を、軸力・曲げ・せん断力を受ける RC 部材に対し、その曲げ・せん断挙動を精度よく評価でき るように拡張したものである。その解析手順は、簡単には以下の通りである。図-1 に示すよう な RC 矩形断面を薄い層に分割し、図-1(c)(d) のように、軸ひずみ分布は直線、せん断応力分布 は断面内で一定の仮定を与える。その後、各々の層に与えられる軸ひずみ・せん断応力に対し修

正圧縮場理論を用いることで、各 層の力の釣り合い条件ならびに変 形の適合条件を満たす解を求める。 この各層で得られた解より断面力 を算定し、与えられた外力との力 の釣り合いを考えることで、断面 としての唯一の解を求める方法で ある。

*1 山梨大学助教授 工学部土木環境工学科、工博(正会員)

*2 山梨大学教授 工学部土木環境工学科、工博(正会員)

(2) 材料モデル

コンクリートの応力-ひずみ関係は、図-2に示すように、圧縮領域においては、最大圧縮応 力までを2次曲線と仮定した。最大圧縮応力は、Collins ら²⁾の提案した式(式(1))を用い主引 張ひずみにより低下させた。

$$f_{2_{\text{max}}} / f_{c}' = 1/(0.8 - 0.34\epsilon_{1} / \epsilon_{co}) \le 1.0$$
(1)

ただしひび割れがある程度大きくなると圧縮強度はほぼ一定となることが報告されている³⁾ので 本解析では、主引張ひずみがコンクリートのひび割れひずみの40倍以上になったとき圧縮強度 が一定になると仮定した。

引張領域にあっては、応力は最大引張応力までは初期勾配 (2f°c/ε co) で増加すると仮定した。 ひび割れ発生後は、次式に示す有効高さ (d) を関数として含む引張軟化曲線¹⁾を用いている。

$$\sigma_{1} = \frac{f_{t}}{1 + 3(d/16)^{1/3} \sqrt{200(\varepsilon_{1} - \varepsilon_{cr})}}$$
(2)

鉄筋の応力 – ひずみ関係は、引張・圧縮とも降伏点までは線形を保ち、降伏点を超えると一定の降伏応力となる bi-linear 型を仮定した。

3. せん断補強筋を有するRCはり断面のせん断耐荷力の評価

(1) せん断補強筋が降伏する場合のせん断耐荷力の評価

解析に用いたモデルは、図-3 に示す、幅 10cm、有効高さ 30cm の矩形断面に、断面積 50cm² の引張鉄筋と断面積 45cm²の圧縮鉄筋を配置したモデルである。解析は、この断面モデルを高 さ方向に 20 等分割して行った。解析に用いた材料定数としては、コンクリートの圧縮強度を 300kgf/cm²、圧縮強度時のひずみを -0.002、引張強度を 30kgf/cm²、ひび割れ発生ひずみを 0.0001、 引張鉄筋・圧縮鉄筋・せん断補強筋の降伏強度を 3400kgf/cm²、ヤング係数を 1.9x10⁶ kgf/cm²と 仮定した。この時に、せん断補強筋比 (r=As/(Bw·S))を 0.0% から 2.09% まで変化させたときの解 析を行い、せん断補強筋比がせん断耐荷力に及ぼす影響を調べた。これらのせん断補強筋比の範 囲においては、解析モデルは一般に用いられる修正トラス理論に従えば、せん断補強筋降伏によ りせん断破壊すると認められるものである。

図-4 に、せん断補強筋比を 0.0%、 0.29%、 0.94%、 2.09% に変化させ、 M/(V·d)=3.0 (対称 2 点集中載荷の場合 a/d=3)となる場合の、解析より得られたせん断力-曲率関係を示す。また図-5 には、その時のせん断カーせん断ひずみ関係を示す。なおせん断ひずみとしては、 20 等分割した分割断面の各層より得られる値の平均した値を用いている。図中実線が、 r=0.0%、 一点鎖線が r=0.29%、 破線が r=0.94%、 点線が r=2.09% の解析結果を示している。

図-4によれば、せん断補強筋比が変化しても、せん断力-曲率関係に及ぼす影響はほとんど

-786-

ないことが分かる。この結果は、断面の曲率がRCはりの曲げ変形量と直接関係していると考え れば、せん断破壊するRCはりに対して、曲げ変形量はせん断補強筋比に関係しないということ を意味する。それに対して、図-5に示したせん断力-せん断ひずみ関係においては、せん断補 強筋比が変化することでその傾向は大きく異なり、非常に大きな影響を受けていることが理解で きる。すなわち、せん断補強筋量が少なくなるほど、より小さい荷重レベルで、せん断ひずみが 急激に増加する性状が示されている。この結果は、せん断破壊するようなはりに対しては、せん 断補強筋量はせん断変形と密接な関係を有しており、さらにRCはりの最終的な挙動としては、 曲げ変形ではなくせん断変形挙動に大きく依存していることを示すものである。

また図-4、図-5中には●印で、解析より得られた断面の一部のせん断補強筋が降伏する時点 を示しているが、このせん断補強筋降伏後から断面のせん断ひずみの増加量がさらに著しく大き くなる傾向が示されている。一般に、せん断補強筋を有するはりは、せん断補強筋が降伏すると、 斜めひび割れ幅が急激に拡大してはりの変形が急増することで、終局限界状態に達すると考えら れる。したがって本解析結果は、これらの現象を概ね妥当に評価していることになる。ただし、 本解析では、せん断補強筋降伏後も荷重が徐々に増加していき、最大荷重近傍で引張鉄筋が曲げ 降伏する現象が見られる。このことは、本手法が基本的に平均化した連続的な要素の仮定に基づ いて行っているためと考えられる。すなわち、一般に RC はりの挙動はひび割れなどの不連続面 での局所化した挙動に支配されるが、本解析では連続体の仮定により、この局所挙動を厳密に考 慮していないためと考えられる。したがって、解析より得られる最大荷重をせん断耐力と見なす ことができないと考え、本解析手法において得られるせん断耐力は、先に示したように現象的に

せん断破壊時の挙動と等しくなると思われる、せん断補強筋降伏時により評価することとした。

図-6は、いま示した基準により得られたせん断耐荷力の解析値と従来一般的に用いられてい る修正トラス理論(V=Vc+Vs、Vcとしては二羽らの提案式⁴⁾を、Vsについては圧縮斜材の角度 を 45度と仮定したものを用いた)により得られた値との比較を示したものである。図中実線が 修正トラス理論による値を、●印が解析より得られたせん断耐力を示している。両者を比較して みれば、今回解析を行った範囲では、せん断補強筋量増加とともにせん断耐力が増加する傾向は 解析値の方が修正トラス理論よりも大きくなっていることが認められるものの、せん断耐力とし てはいづれのせん断補強筋量に対しても、解析値と修正トラス理論が概ね一致していることが分 かる。

そこで次に、せん断力に対する Vc と Vs の負担割合について考える。図-6 中にせん断補強筋 のみが負担するせん断力 (Vs)の解析値(▲印)とトラス理論より得られる値(破線)をそれぞ れ示す。 Vs の値に関しては、解析値とトラス理論でほとんど一致している。したがって、解析 より得られたせん断耐力に及ぼすせん断補強筋の効果は、 Vs に対してはトラス理論と同一と言 える。一方、図-7に、せん断補強筋比が異なる時の解析より得られたせん断力(V)と、全せん断 力のうちコンクリートが負担するせん断力 (Vc) との関係を示す。図中、実線が r=0.0%、一点鎖 線が r=0.29%、破線が r=0.94%、点線が r=2.09% に対応している。図によれば、 r=0.0%のせん断 補強筋を持たない RC はり断面が破壊した後に(図中▲印)、せん断補強筋を有するいづれのケ ースにおいても、コンクリートが負担するせん断力の割合 (Vc/V) が急激に低下していることが 分かる。ただし、それ以降もコンクリートの負担するせん断力の絶対値は若干増加する傾向を示 している。また、せん断補強筋量が変化しても全せん断力に対するコンクリートが負担するせん 断力の割合は各せん断力レベルでほぼ一定であることが分かる。以上をまとめれば、修正トラス 理論で仮定されたコンクリートとせん断補強筋のせん断力の負担割合は、拡張した修正圧縮理論 に基づく解析値と概ね一致していると言え、妥当なものと考えられる。ただし厳密に言えば、コ ンクリートの負担力 (Vc) に関しては、必ずしも一定値ではなく、せん断補強筋量が増加すれば 若干増加する傾向がある。

(2) せん断補強筋が降伏しない場合のせん断耐荷力の評価

一般に、せん断補強筋量を増やしていくと、 RC 部材はせん断補強筋が降伏する以前に斜め圧 縮力によってウエブコンクリートが圧縮破壊する形態を示す。そこで次に、せん断補強筋量を多 量に配置していった場合のせん断耐力を解析的に評価することを試みる。

解析に用いたモデルは、図-8に示す、幅 15cm、有効高さ 25cm の矩形断面に、断面積 110cm² の引張鉄筋と断面積 100cm²の圧縮鉄筋を配置したモデルである。解析に用いた材料定数として は、コンクリート・鉄筋とも図-3の解析モデルと同様のものを用いた。解析は、せん断補強筋 量をパラメータとし、せん断補強筋比を 0.0% から 6.2% まで変化させて行った。

解析より得られたせん断補強筋比とせん断耐力 τ/fcの関係を図-9に示す。図中、●印が解析 より得られたせん断耐力であり、併せて、実線で修正トラス理論の値、破線で Nielsen らによる 塑性理論の値⁵⁹((3)式)を示している。

$$\frac{\tau}{f'_{c}} = \begin{cases} \sqrt{r \cdot f_{y} / f'_{c} (v - r \cdot f_{y} / f'_{c})} & , r \cdot f_{y} / f'_{c} \le 0.5v \\ 0.5v & , r \cdot f_{y} / f'_{c} \ge 0.5v \end{cases}$$
(3)

ここで、**r**: せん断補強筋比、 fy: せん断補強筋の降伏強度、 fc: コンクリートの圧縮強度で ある。なお、有効強度係数 ν としては次式を与えている。

$$\mathbf{v} = 0.8 - f'_c / 200, (f'_c : MPa) \tag{4}$$

解析値において、せん断補強筋量増加とともにせん断力が増加している解は、前節で示した せん断補強筋が降伏する場合のせん断耐力である。このせん断補強筋が降伏する場合の耐力とし ては、既に述べたように、修正トラス理論により概ね評価可能といえる。

一方、せん断補強筋がある程度以上多くなると、解析より得られるせん断耐力は、せん断補強 筋比によらず一定値となり、またその値は塑性理論とほぼ同一の解析結果となった。本解析は、 既に述べたようにせん断応力分布(断面内で一定)と軸ひずみ分布(断面内で直線分布)を仮定 して、所定の断面力と釣り合う解を求めているが、あるせん断力以上ではせん断補強筋降伏以前 に、どのような軸ひずみ分布に対しても断面力の釣り合いを満足することができない場合が生じ る。この一定値となるせん断力は、このような状態に対応して得られたものである。したがって、 このせん断力に対応する破壊モードとしては、せん断補強筋が降伏する場合と明らかに異なるも のである。このような状態の時に得られる断面内部の応力状態を図-10に示す。図-10は、せん 断補強鉄筋比 6.2% の時の破壊直前の断面高さ方向に対する、主引張応力(σ 1)、主圧縮応力 (σ 2)、主圧縮応力角度(θ)の分布をそれぞれ示している。図によれば、主圧縮応力は 25 度~ 45 度の範囲内で流れ、断面内にほぼ一様な応力場が主引張応力ならびに主圧縮応力に対して形 成されていることが分かる。またこの時、主圧縮応力の値はほぼ最大応力時に対応している。し たがって、せん断力一定となる解析結果は、ウエブ圧縮破壊耐力に対応していることになり、本

解析手法により解析的にウエ ブ圧縮破壊耐力が評価できる ことを示すものである。

そこで次に、圧縮強度(fc) のみをパラメータとし、fc がウエブ圧縮破壊耐力に及ぼ す影響の解析的評価を試みる。 解析は、図-8の解析モデル に対し圧縮強度のみを150 ~ 450kgf/cm²に変化させて行っ た。解析結果を図-11に示す。

図中、●印が解析結果を、実線が(4)式の有効強 度係数を用いたときに塑性理論より得られる値を、 破線が次式に示す土木学会コンクリート標準示方 書式を示している。

$$V = 4\sqrt{f_c} b_w d \qquad (5)$$

解析結果は、圧縮強度が大きくなるにつれて τ/fcが徐々に低下し、またその低下率が緩やか になることを示している。τ/fcの低下が緩やか になるのは、コンクリートの圧縮最大応力に対し 材料モデルで述べた低減値の限界を仮定している ためである。解析結果を(3)式の Nielsen らが提案

した式と比較すれば、塑性理論により得られる値とほぼ同様の傾向を示していることが分かる。 したがって、ウエブ圧縮破壊耐力としては、簡単には、塑性理論より得られる値を用いればほぼ 妥当に表し得ることになると思われる。また塑性理論を用いれば、多くの場合示方書式に比べか なり合理的な設計となる。

4. まとめ

拡張した修正圧縮場理論に基づく解析をせん断補強筋を有する RC はり断面に適用し以下の結 論を得た。

(1) せん断補強筋が降伏する場合のせん断耐力は、本解析のせん断補強筋降伏時で評価することができる。またその場合のせん断耐力は、修正トラス理論でほぼ評価できるが、 Vc の値は、 せん断補強筋量が多い場合、斜めひび割れ発生荷重よりも若干増加する。

(2)本解析法により、解析的にウエブ圧縮破壊耐力が評価可能であることを示した。また解析 的検討の結果、その耐力としては、塑性理論を用いればほぼ妥当に評価できることが明らかとな った。

謝辞:本解析を行うにあたり、本学学生であった大矢竜市君(八千代エンジニアリング)に協力 頂いた。ここに記して謝意を表します。

参考文献

[1] 中村光、檜貝勇: 拡張した修正圧縮場理論によるRCはり断面のせん断耐荷力評価、土木学 会論文集、 No.490 / V-23 、 1994 、 pp.157-166.

[2]Frank J.Vecchio and Michael P.Collins: Predicting the responce of reinforced concrete beams subjected to shear using modified compression fields theory, ACI Structural Journal, 1988, pp.258-268.

[3] 宮原長久、川上泰司、前川宏一: ひび割れを含む鉄筋コンクリート板要素の一軸圧縮下にお ける非線形挙動、土木学会論文集、 No.378 / V-6、 1987、 pp.249-258.

[4] 二羽淳一郎、山田一宇、横沢和夫、岡村甫: せん断補強鉄筋を用いない RC はりのせん断強度 式の再評価、土木学会論文集、 No372 / V-5、 1986、 pp.167-176.

[5]M.P.Nielsen, M.W.Braestrup, B.C.Jensen and F.Bach: Concrete plasticity, Special publication, Danish Society for Structural and Engineering, 1978.