論文 地中梁を無くした場合の高架橋設計

小原 和宏*1·鎌田 則夫*2·森山 智明*3

要旨:鉄道の2線2柱7径間ラーメン高架橋(L= 70m)を地中梁のない1柱1杭高架橋と した場合、地震時による大きな荷重が作用した時の破壊モードや耐力について弾塑性解 析による検討を行った。地中梁有り構造は水平震度0.375の曲げ降伏耐力で設計してい るが、地中梁無し構造の場合は0.50まで曲げ降伏耐力を上げることにより、水平震度1.0 程度の耐震性能を確保できる。

キーワード:地中梁なし高架橋、弾塑性解析、塑性率、耐震性能、水平震度

1. まえがき

連続立体交差に伴う鉄道高架橋の施工は、営業線に近接した条件の下、線路を切り換えながら 工事が行われる。そのため、狭い作業空間で施工すること、及び資材運搬用通路の確保など競合 が生じる。そこで、構造形式を1柱1杭式高架橋とした場合は地中梁の施工が省略でき、なおか つ工事用通路を確保できるため工期短縮が図れ、トータルコストの削減が可能である。

従来、弾性設計法は設計荷重に対する応力、変位を求めるものであるが、構造物の破壊に対し ては安全性が明らかでない。こういった地中梁の無い高架構造とした場合、地震による大きな荷 重が作用した時の破壊モードや耐力についての安全性を明らかにする必要がある。ここでは、鉄 道高架橋にあまり例のない地中梁無しの1柱1杭高架橋2線2柱7径間ラーメン高架橋について 弾塑性解析による検討を行った。

2.解析モデル

(1) 構造物

在来線ラーメン高架橋(線路方向L=70m,7径間、線路直角方向 *l*=5m,高さH=8.4m、杭長16m,バラスト軌道、ゲルバータイプ)を用いて弾塑性解析を行った。表-1に部材寸法を示す。

(2) 地 盤

地中ばりのない1柱1杭構造の 場合、地震時等の水平力を杭が受 け持つことになるため、杭の変位、 応力が大きくなる。単独杭は、地 表面付近の水平変位が大きく、弾

		現状	線路方向・線路直角方向 <u> 地中梁無し</u>				
断证	訂形状						
上層梁	縦	1200×650	1300×800(133%)				
	横	1100×650	$1200 \times 800(134\%)$				
地中梁線路方向		1300×700	<u> </u>				
	線路直角	1300 × 700	<u> </u>				
柱		750×750	1000×1000(178%)				
	杭	φ1000	φ1300 (169%)				

表-1 部材寸法

*1東日本旅客鉄道㈱東京工事事務所工事管理室主席(正会員)

*2 東日本旅客鉄道㈱東京工事事務所工事管理室係長(正会員)

*3 東日本旅客鉄道㈱東京工事事務所工事管理室課員(正会員)

性計算から求まる水平地盤反力度 が大きくなり、地盤の有効抵抗土 圧を越え易い。この場合、地盤の 有効抵抗土圧(受動土圧)を越え る範囲は塑性域として有効抵抗土 圧が作用するものとする。また、 地層が高架橋内で変化しており、 1~4径間と5~7径間の地盤バ ネを変えて計算する。図-1に構 造計算モデルを示す。

(3)荷重

荷重の組み合わせは『死荷重』 と『地震の影響』を考え、『地震 の影響』による水平力(水平震度

=0.25)をλ倍させながら弾塑性解析した。

3. 計算結果および考察

(1)曲率塑性率と変位塑性率

弾塑性解析を行う場合、部材のM-φ曲線の特性として、バイリニア型の復元力特性を用いた。 解析で曲率塑性率μ₀を求め、式(1)⁽¹⁾ により変位塑性率μを計算する。

..

$$\mu = 0.878 \times (1.11)^{\mu}$$
 (1)

(2)線路方向

表-2は、水平作用力の増加による柱上端、杭の変位と塑性率を表したものである。通常の設計では塑性率が4程度確保されているため、ここでは"変位による塑性率4までを許容値と考える"と定義する。この表より、柱上端から塑性ヒンジが現れ、水平震度0.68(水平震度0.25のλ=2.70倍)の水平力が作用した時に、深さ約1mの位置で杭が許容値を越える。

		1	l		2	:	3		4		5	·	6
λ		1.	95	2.10		2.25		2. 40		2, 55		2, 70	
水平	裏度	0.	49	0, 53		0, 56		0.60		0.	64	0, 68	
変位(ca)		6.9		7.7		9.0		10, 6		12.4		17.8	
塑包	E 🕮 🔛	μ.	μ	μŧ	μ	μ.	μ	μ.	μ	μ.	μ	μ.	μ
	1	0. 71	0.95	0.79	0.95	0. 91	0.97	1.63	1.04	3.25	1, 23	7.93	2.01
柱上端	2	0.89	0, 96	0. 99	0.97	2.29	1.12	3, 89	1.32	5.64	1, 58	10, 56	2.64
	3	0, 87	0, 96	0, 96	0, 97	1.98	1.08	3, 49	1.25	5, 19	1.51	10.03	2 50
	4	0.87	0, 96	0, 96	0, 97	1, 96	1,08	3, 48	1,26	5, 18	1.51	10.02	2,50
	5	1,00	0.97	1.72	1.05	3, 07	1.21	4,69	1.43	6.49	1.73	11.32	2,86
	6	0.98	0.97	1.67	1.05	3, 02	1.20	4.64	1, 42	6.44	1, 72	11.27	2,85
	7	0.99	0.97	1.74	1.05	3.08	1, 21	4.69	1,43	6, 48	1.73	11.28	2.85
	8	0.94	0, 97	1.33	1.01	2.74	1.17	4.42	1.39	6.30	1.69	11.29	2 85
杭 H=1. 0m	1	<u> </u>							ļ	0, 80	0.95	0.98	0.97
	2									0.84	0,96	0.99	0, 97
	3									0.83	0, 96	0.99	0.97
	4									0.83	0, 96	0, 99	0.97
	5									0, 97	0.97	17.85	5,65
	6									0.97	0.97	17.87	5. 67
	7						[1	0, 96	0, 97	17. 37	5.38
	8									0.99	0.97	21, 12	7.95

表-2 線路方向塑性率計算結果

—1220—

図-2は、○は塑性ヒンジの発生を、● は許容値に達したものを表し、番号は発生 した順序を表す。柱の上端から順に塑性ヒ ンジが発生し、水平震度0.68(λ=2.70) で杭が許容値を越える。

図-3は、変位と水平震度の関係を表し たもので、水平震度に構造物質量を乗じる と、囲まれた面積はエネルギー吸収量を表 す。

弾塑性構造物が許容値(塑性率4)の塑性変位まで変形する間に吸収 するエネルギーが弾性構造物のエネ ルギー吸収量と等価であれば、その 弾塑性構造物は弾性構造物と同等の 耐震性能を有すると考えられる。

よって、図-3より、地中粱無し の構造においても曲げ降伏点震度を 0.5まで上げることにより、弾性構 造物の水平震度1.0に相当するエネ ルギー吸収量を確保できることが確 認された。

(3)線路直角方向

表-3では、水平震度0.45(水平 震度0.25の1.80倍)で柱上端に塑性

水平震度1.0 とした弾性構造物のエネルギー吸収量 $A_0 = 6.95$ 許容値($\mu=4$)までの弾塑性構造物のエネルギー吸収量 A = 8.27 $A_0 / A = 1.19$

図一) 称昭万円エイルマ 吸い	図-	3	線路方向エ	ネ	ルギー	·吸収	튙
-----------------	----	---	-------	---	-----	-----	---

ヒンジが現れる。水平震度0.49 (λ=1.95) で杭上部に塑性ヒンジが現れ、水平震度0.60 (λ= 2.40) で杭が許容値を越える。

			1		2	2		3	4	1		5	(3	
	2		1.0	55	1.1	80	1.	95	2.	10	2.	25	2.	40	
水平震度		記念	0.	41	0.45		0.	49	0, 53		0, 56		0, 60		
		0.73		8.20		9.	4	11.3		15.09		20.8			
	<u></u>		11.	ш	μ.	μ	μo	μ	μe	μ	μ,	μ	μ.	μ	
—	<u> </u>	1	0.65	0.94	0.71	0, 84	0, 80	0.95	0, 89	0.96	0, 92	0, 97	0, 98	0, 97	
L	比果	2	0.47	0.92	0.51	0.93	0.52	0, 93	0.52	0, 93	0, 53	0, 93	0, 55	0.93	
<u> </u>	1		0.69	0.94	0, 78	0,95	0.89	0, 96	1.63	1.04	4, 55	1.41	9, 00	2.25	
		1		0.29	0.90	0.31	0, 91	0.34	0, 91	0,40	0, 91	0.51	0, 93	0, 59	0.93
柱		1-353	0.94	0.97	1.56	1.03	3.32	1.24	4.92	1.47	7.36	1.89	12, 89	3. 37	
		1.74	0.37	0.91	0.46	0.92	0,58	0, 93	0,68	0.94	0.77	0.95	0, 93	0, 97	
┝━		1 1	0.42	0.92	0.57	0.93	0,80	0,95	1.38	1.01	3, 22	1.23	8, 81	2.20	
	上端		0.53	0.93	0 71	0.95	1.00	0.97	2.23	1.11	4.64	1. 43	11, 15	2.81	
		1	0.62	0.94	0.84	0.96	1.31	1.01	2,93	1, 19	5, 88	1,62	14, 69	4.07	
杭	1, 0m		0.63	0.94	0.84	0,96	1, 31	1.01	2.89	1, 19	5, 70	1.59	13.36	3.54	
		1	0.65	0.94	0.87	0.96	1.37	1, 01	3.07	1, 21	6.09	1, 66	14. 30	3, 90	
	1. 5m	2	2 0.64 0.94 0.86 0.96 1.34	1.01	3.00	1.20	5,96	1.63	13.54	3.61					

表-3 線路直角方向塑性率計算結果

μ。:曲率による塑性率(φ/φy) μ=0.878×1.11゚μ。

μ :変位による塑性半(δ/δy)

図-4は、線路直角方向の塑性ヒンジの発 生した順序を示す。右側の柱上端、杭上部、 左側の柱上端、杭上部の順にヒンジが発生し、 右側の杭上部で許容値を越える。

図-5より、線路直角方向においても、地 中梁無しの構造においても曲げ降伏点震度を 0.45まで上げることにより、弾性構造物の水 平震度1.0 に相当するエネルギー吸収量を確 保できることが確認された。

図-4 線路直角方向塑性ヒンジの発生

小行設し、0 こした理由構造的のエネルモー吸収量 $A_0 = 8.85$ 許容値($\mu=4$)までの理塑性構造物のエネルモー吸収量 A = 8.90 $A_0 / A = 1.01$

図-5 線路直角方向エネルギー吸収量

参考文献

きる。

4. まとめ

ることが確認された。

1)線路方向、線路直角方向とも、

地中梁なしの構造において、耐震性

能を十分もっている構造を設計でき

2) 地中梁あり構造は水平震度0.37

5の降伏耐力であるが、地中梁なし

構造の場合は0.50まで降伏耐力を上

げることにより、耐震性能を確保で

(1) 松田 猛:弾塑性解析によるRCラーメン高架橋の検討,構造物設計資料No.81,日本鉄 道施設協会