論文 外部拘束を受ける RC 壁板の圧縮性能に及ぼす壁筋強度の影響

江崎文也*1 真境名正彦*2

要旨:周辺フレームに囲まれた壁板のせん断ひび割れ発生後に形成される壁板圧縮ストラットの圧縮性能を明らかにするため、ストラット応力状態のモデル化のために開発した載荷装置を用いて行ったRC壁板要素の圧縮・引張同時載荷実験から、RC壁板の圧縮性能に及ぼす壁筋強度の影響について検討した。実験結果によれば、外部拘束が作用する場合の方が壁筋のみで拘束する場合より圧壊時の圧縮応力度が多少大きくなる傾向があること、降伏点強度が1400MPa級の高強度鉄筋で補強された壁板の場合の方が400MPa級の鉄筋で補強された

キーワード:耐震壁、壁板、圧縮ストラット、壁筋、拘束

1.序

RC造耐震壁の水平抵抗性能は、壁板周辺フレームのせん断・圧縮性能およびせん断ひび割れが生じ た壁板の膨張に伴う周辺フレームの拘束作用を受けるRC板要素からなる圧縮ストラットの圧縮性能に 大きく依存していることが指摘されている[1]、[2]。耐震壁の壁板は、壁筋のほか、せん断ひび割れ発 生後生じる壁板の膨張に伴う周辺フレームから大きな変動拘束力を受けることから、耐震壁の水平抵抗 性能を解明するためには、外部から変動拘束力を受ける壁板コンクリートの圧縮性能を明らかにする必 要があると考えられる。著者らは、上記に述べたせん断ひび割れ発生後の壁板の応力状態の再現が可能 な加力装置を開発し、ひび割れ発生後の壁板の膨張に対する拘束方法の相違が壁板ストラットの圧縮性 能に及ぼす影響について検討を行っている[3]。

本研究は、周辺フレームが健全で、壁板のせん断破壊によって決まる耐震壁の水平抵抗性能に及ぼす 壁筋強度の影響を検討するため、異なる降伏点強度の鉄筋で補強されたRC壁板要素について、スト ラット方向に圧縮力を受けると同時に、ストラットと直交方向に引張力を受け、圧縮力の増加とともに 変動する拘束力を受ける応力状態を再現することが可能な載荷装置を用いて実験を行い、RC壁板の圧 縮性能に及ぼす壁筋強度の影響を明らかにしようとするものである。

2.実験概要

2.1 実験計画および加力装置

耐震壁の壁板は、一般に縦横等量の鉄筋で補強されている。このような耐震壁が水平力を受けた場 合、壁板のせん断ひび割れは、水平軸とほぼ45度の角度で生じることが一般的である。これと異なる 場合に生じるひび割れ間のひび割れ方向応力伝達が耐力に及ぼす影響は小さいと考えられることから、 本研究では、ひび割れ角度45度の理想化した状態を想定する。終局時には壁板コンクリートと壁筋と の付着はかなり劣化していることが考えられるので、付着がなくなれば、終局時における耐震壁の水平 抵抗機構は、主として壁板コンクリートが水平力を負担し、壁筋と周辺フレームが異方性化した壁板の *1九州共立大学教授 工学部建築学科、工博(正会員) *2 読売九州理工専門学校 建築学科、講師

膨張を拘束する役割を果たすことになる。この場合、壁板のせん断応力度 τ と圧縮応力度 σ_c は、(1)式 および(2)式で与えられる(図-1参照)。周辺フレームが健全であれば、耐震壁の水平抵抗性能は、(2)式 の σ_c に依存する。図 -1に示す応力状態を再現するために開発した図 - 2に示す加力装置を用いて、(2) 式の σ_c を明らかにすることを目的とする(詳細については文献[3]参照のこと)。

$\tau = r \tau + c \tau = p_s \sigma_s + \sigma_R$	(1)
$\sigma_c = \sigma_c + \sigma_c = 2(p_s \sigma_s + \sigma_R)$	(2)

2.2 試験体

試験体形状および配筋の例を図-3に、試験体 一覧を表-1に、それぞれ示す。試験体形状は、震 災後の耐震壁のひび割れ状況および実験時におけ るひび割れ状況を参考にして、せん断ひび割れに 挟まれた壁板ストラットを想定して決めた。表-2 に使用した鉄筋の力学的性質を示す。 [シリーズ は、ストラットと直交する方向の応力が作用しな い場合の性状をみるため、ストラット方向のみ圧 縮力を載荷するように計画したものである。Ⅱシ リーズは、終局強度がコンクリートの圧壊で決ま ることを考慮に入れて、同一条件のもとでの強度 および変形のばらつきを検討するために計画した。 Ⅲシリーズは、壁板の膨張を拘束する方法の相違 による影響を明らかにする目的で計画したもので、 文献[3]で詳述している。Ⅳシリーズは、壁筋強度 の影響を明らかにするため、降伏点強度が他のシ リーズで用いた強度 400MPa 級よりもかなり高い 1400MPa級の高強度鉄筋で補強された場合につい て検討するために計画したものである。

2.3 測定装置

図-4に示すように、試験体表裏それぞれにつ いて、圧縮方向1カ所、引張方向3カ所で試験体 に埋め込んだボルト間の各変形を、感度1000µ/ mmの変位計にて測定した。また、図中に示す位 置で、鉄筋の表面にゲージを貼付し、各ひずみを 測定した。

2.4載荷プログラム

漸増単調載荷により実験を行った。壁筋の降伏荷重までに壁板コンクリートが圧壊しない場合は、壁 筋降伏後の壁板の広がりに対する周辺フレームの拘束作用が徐々に大きくなることを考慮して、あらか

じめゆるめた状態でセットしていた外部拘束用PC鋼棒のナットを加力ブロックに接触させ、その後の 壁板の広がりに対して変動拘束力が作用するようにした。

	1			
シリ ーズ	試験体名	壁配筋 (p _s %)	σ_{B} (E _s)	
Ι	2.36D	D6@42.4double(2.36)	24.7	
	0.59D	D6@84.8single(0.59)	(2.62)	
	2.25D(1)		250	
	2.25D(2)	D6@42.4double(2.25)	25.8	
	2.25D(3)		(2.37)	
π	1.12D(1)	D(0) 84 8 double (1.12)	24.7	
ш	1.12D(2)	Dol@ 64.6000016(1.12)	(2.62)	
	0.56D(1)		25.8	
	0.56D(2)	D6@84.8single(0.56)	25.0	
	0.56D(3)		(2.37)	
m	2.46DM	D6@42.4double(2.46)	20.4	
	1.22DM	D6@84.8double(1.22)	29.4	
	0.61DM	D6@84.8single(0.61)	(2.65)	
ш	2.46DH	D6@42.4double(2.46)	128	
	1.22DH	D6@84.8double(1.22)	42.0	
	0.61DH	D6@84.8single(0.61)	(2.74)	
	1.56U(1)	U7.4@84.8double(1.56)	353	
	1.56U(2)	07.4@04.000000(1.30)	55.5	
	2.25DH(1)	$D(\alpha)$ (2.4 double (2.25)	(2.99)	
	2.25DH(2)	D0(@42.400001c(2.23)		
IV	1.05U(1)	117.4@127.2double(1.05)	25.9	
	1.05U(2)	07.4@127.200000(1.03)		
	2.25DM	D6@42.4double(2.25)	(2.57)	
	0.78U(1)	117.4@84.8single(0.78)	25.0	
	0.78U(2)		(2.63)	
	0.53U(1)	II7 A@127 2 single(0.53)	25.8	
	0.53U(2)	$[0, -\frac{1}{2}]$	(2.52)	

表-1 試験体一覧

表-2 鉄筋の力学的性質

種別	a	σ,	σ	伸び(%)
D6*1	0.300	407	538	22.9
D6*2	0.312	402	571	23.4
D6*3	0.286	474	597	18.0
U7.4	0.402	1435	1483	11.3

1)*1:シリーズ I 、*2:シリーズ II、*3:シリーズ II お よび IV 2) *a*:断面積(cm²)、σ_y:降伏点強度(MPa)、 σ_µ:引張強度 (MPa)

図-3 試験体形状および配筋の例

p_s:壁筋比、σ_g:コンクリートシリンダー圧縮強度(MPa) *E_s*:コンクリートヤング係数(10⁴MPa)

3.実験結果とその検討

図 - 5 に、 I シリーズ試験体のストラット圧縮 応力度 σ_c と圧縮ひずみ ε_c との関係を示す。図 - 5 によれば、コンクリートシリンダーとほぼ同じ応 力度 - ひずみ度関係を示しており、圧壊時の圧縮 応力度 σ_{cu} は、コンクリートシリンダーの圧縮強度 σ_{g} とほぼ同程度となっていることから、壁板圧縮 ストラットが圧縮方向のみ載荷された場合は、コ ンクリートシリンダーの応力度 - ひずみ度関係と

ほぼ同じと考えてよいと思われる。

表-3に、IIシリーズの各試験体の σ_{cu} および圧 壊時のひずみ ε_{cu} を、それぞれ示す。2.25 Dシリー ズは、外部拘束が無い場合であり、0.56 Dシリー ズは、外部拘束が作用した場合である。いずれの 場合とも、圧壊時応力度およびひずみ度のばらつ き度合いを示す標準偏差および変動係数は、コン クリートシリンダー供試体3体の圧縮強度および 強度時のひずみのばらつき度合(標準偏差 0.534 MPa、1.46(10⁻³)、変動係数 0.02、0.07)とほぼ同 程度と考えてよいと思われる。

図 - 6 に、ⅡシリーズおよびⅣシリーズ試験体 の*σ_cとε_c*の関係および*σ_cとストラットと*直交する 方向の引張ひずみ*ε_iとの関係の例を示す。これに* よれば、初期の段階では引張ひび割れの発生も少 なく、引張方向のひずみは小さい。この傾向は、壁 筋比が小さいものほど顕著である。しかし、圧縮 応力度が上昇して圧壊近傍になると、比較的大き なひび割れが発生し、急激に引張ひずみが増大す

表-3 Ⅱシリーズ試験体圧壊時応力とひずみ

試験体名	σ _{cu} (MPa)		$\sigma_{cu}(MPa)$ $\epsilon_{cu}(10^3)$	
2.25D(1)	19.1	X=18.5	2.40	X=2.17
2.25D(2)	18.2	Y=0.399	1.94	Y=0.19
2.25D(3)	18.3	Z=0.02	2.17	Z=0.09
0.56D(1)	18.3	X=19.5	2.02	X=1.89
0.56D(2)	19.7	Y=0.865	1.81	Y=0.09
0.56D(3)	20.4	Z=0.04	1.83	Z=0.05

σ":壁板コンク	リート圧壊時	「の圧縮応力度、	<i>ε</i> ":圧壊時の平
均圧縮ひずみ、	X:平均值、	Y:標準偏差、	Z:変動係数

図-5 Iシリーズ試験体の圧縮応力ひずみ関係

図-6 II およびIVシリーズ試験体の圧縮応力 σ_e と圧縮ひずみ ϵ_e およびストラットと直交方向の引張ひずみ ϵ_e との関係の例

る傾向がある。これは、鉄筋量が少ない場合、多量の壁筋で補強した場合に比べて、鉄筋の付着力によるコンクリートへの応力伝達が小さいことに起因しているものと考えられる。

表-4に、各試験体の壁板コンクリート圧壊時の圧縮応力度 σ_{cu} および圧壊時ひずみ ε_{cu} 、および σ_{cu} の コンクリートシリンダー圧縮強度 σ_B の平方根 $\sqrt{\sigma_B}$ に対する比 $\sigma_{c'}/\sqrt{\sigma_B}$ の一覧を示す。また、図-7お よび図-8に、 σ_{cu} の $\sqrt{\sigma_B}$ に対する比 $\sigma_{c'}/\sqrt{\sigma_B}$ と壁筋比 p_s との関係および $\sigma_{c'}/\sqrt{\sigma_B}$ とコンクリート圧壊 時の引張ひずみ ε_{u} との関係を、それぞれ示す。図-7によると、壁筋の降伏点強度に関係なく、壁筋比 が少ない方が $\sigma_{c'}/\sqrt{\sigma_B}$ が大きくなる傾向がみられる。この原因としては、壁筋のみで壁板の膨張を拘束 する場合の方が多量の鉄筋で補強されているため、初期の段階から付着力によりコンクリートへ引張力 が伝達され、徐々に引張ひび割れが生じてストラットの圧縮耐力の劣化が進行することに起因している ものと考えられる。しかし、この傾向はわずかであること、また、図-8によれば、 σ_{cu} に及ぼす ε_{u} の 影響は、本実験の範囲ではみられないようであることから、 $\sigma_{c'}/\sqrt{\sigma_B}$ は、ほぼ一定値と考えてよいもの と思われる。図-7によれば、 $\sigma_{c'}/\sqrt{\sigma_B}$ は、壁筋強度にかなり影響されていることがわかる。すなわち、 1400MPa級の高強度鉄筋で補強されたUシリーズ試験体の場合の方が400MPa級の鉄筋で補強されたD シリーズ試験体の場合に比べて、 $\sigma_{c'}/\sqrt{\sigma_B}$ がかなり低くなっている。これは、図-9に示すように、ひ び割れ間の広がりによる鉄筋の局部的な強制曲げによって生じる局部付加軸力が、終局時には高強度鉄 筋の方がより大きいものとなることに起因しているものと考えられる。

表 - 4 および図 - 7 から、400MPa級の鉄筋で補強されたDシリーズの場合および1400MPa級の鉄筋 で補強されたUシリーズの場合の σ_{cu} の平均値は、それぞれ、およそ3.70 $\sqrt{\sigma_B}$ および2.90 $\sqrt{\sigma_B}$ となっ た。 σ_{cu} の平均値から、終局せん断強度は、(1)式および(2)式より、およそ1.85 $\sqrt{\sigma_B}$ および1.45 $\sqrt{\sigma_B}$ と なる。一般に、壁板がせん断圧縮破壊するときの耐震壁の壁板のせん断応力度分布は一様ではなく、壁 板対角線方向中央部が大きくなる傾向にあることが、実験での破壊状況や解析から指摘されている。そ こで、壁板のせん断応力度の集中係数を1.5程度と仮定すれば、壁板周辺のフレームが健全で、壁板の せん断圧縮破壊により耐力が決まる場合の公称終局せん断強度 $\tau_u = Q_u / tl(Q_u : 終局耐力、t: 壁厚, l: 側$ 柱中心間距離)は、およそ1.23 $\sqrt{\sigma_B}$ および0.97 $\sqrt{\sigma_B}$ 程度となることが予想される。これらの値は、周辺 フレームが比較的剛強な場合で壁板のスリップ状破壊で決まる耐震壁の終局せん断強度の平均値に近い ものとなっている[4]。

- 1069 -

4.結論

壁板のせん断圧縮破壊によって決まる耐震壁の水平耐力に及ぼす壁筋強度の影響を検討するため、せん断ひび割れ発生後圧力場を形成する壁板の応力状態を再現するための加力装置を用いて、異なる壁筋 強度で補強されたRC板要素の変動圧縮力と変動引張力を同時に作用させた実験を行った。その結果、 以下のことがわかった。

- (1)コンクリート圧壊時の圧縮応力度および圧縮ひずみのばらつき度合いは、コンクリートシリンダー の圧縮強度および強度時ひずみのばらつき度合いとほぼ同程度である。
- (2)外部拘束とともに少ない鉄筋量で補強されたRC壁板の方が、多量の壁筋のみで拘束された壁板よりも圧壊時の圧縮応力度 σ_mが大きくなる傾向がみられるが、その程度はわずかであり、 σ_mのコン

 $_{\prime\prime\prime}$ クリート圧縮強度 $\sigma_{\!_{B}}$ の平方根 $\sqrt{\sigma_{\!_{B}}}$ に対する比 $\sigma_{\!_{C}}/\sqrt{\sigma_{\!_{B}}}$ は、ほぼ一定値を示す。

(3)降伏点強度が1400MPa級の高強度鉄筋で補強されたRC壁板の場合の方が、400MPa級の鉄筋で補 強されたRC壁板の場合より、 $\sigma_{c}/\sqrt{\sigma_{B}}$ が低くなる。

謝辞

本研究は、平成8年度九州共立大学特別研究助成により行われた。実験にあたっては、本研究室卒論生のお世 話になった。壁板に用いた高強度鉄筋は、高周波熱錬株式会社よりご提供頂いた。加力装置および試験体製作に あたっては、本校技能員栗山哲生、青木 治、生野千力の各氏にお世話になった。ここに、関係各位に対し深く 感謝します。

[参考文献]

- [1]富井政英·江崎文也: Expression for Calculating Lateral Shear Capacity of One-Bay One-Story Reinforced Concrete Framed Shear Walls Dominated by Slip Failure of Their Infilled Wall Panel、日本建築学会構造系論文報告集 第366 号、pp.142-231、1986.8.
- [2]富井政英·江崎文也: Lateral Shear Capacity of One-Bay One-Story Reinforced Concrete Framed Shear Walls Whose Edge Columns or Edge Beams Failed in Shear、日本建築学会構造系論文報告集 第 376 号、pp.81-91、1987.6
- [3]江崎文也: Experimental Study on the Compressive capacity of Wall panel Struts Restrained by peripheral Structures, Transactions of the Japan Concrete Institute, Vol.14, pp.425-432, 1992.
- [4]日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解説、pp.124-135, 1987.

-1070 -