論文 コンクリート充填円形鋼管短柱の軸圧縮挙動と拘束効果

蜷川利彦*1·崎野健治*2

要旨:コンクリート充填円形鋼管柱の軸圧縮挙動について、幅広い範囲の材料強度や径 厚比の組み合わせで行われた既往の中心圧縮実験結果をもとに、最大耐力を発揮する時 の軸圧縮ひずみと鋼管の周方向応力の大きさに着目して検討する。その検討結果と既往 の研究を考察し、鋼管とコンクリートの相互拘束効果について議論する。 キーワード:拘束効果,最大耐力時の軸圧縮ひずみ,鋼管の周方向応力,中心圧縮実験

1. 序

軸圧縮力を受けるコンクリート充填円形鋼管柱(以下、CFT柱と呼ぶ)はコンクリートと鋼管 の相互拘束効果により、それぞれの荷重-変形曲線を単純に足し合わせたものよりも耐力や靭性 が向上することで知られている。しかし、高強度コンクリートを用いた柱や鋼管の径厚比が特に 大きな柱では、最大耐力を発揮する時の軸圧縮ひずみが比較的小さく、顕著な耐力低下を生じる など、一般に認識されているCFT柱の軸圧縮挙動とはかなり異なった性状を示すことが既往の 実験的研究で明らかになっている[1][2]。したがって、拘束効果を定量的に評価するにあたっ ては、この性状の違いを考慮に入れる必要がある。その手始めとして本論では、CFT短柱の軸 圧縮挙動について、既往の実験結果もとに最大耐力時の軸圧縮ひずみと鋼管の周方向応力の大き さに着目して検討する。また、拘束効果と各種パラメーターの関係についても考察を行う。

2. 試験体

本論では、「ハイブリッド構造に関する日米共同構造実験研究」の一環として、(社)建築業協会と建設省建築研究所で実施された中心圧縮実験の結果について検討を行う。実験の詳細は文献[1]を参照されたい。なお、著者らは既に文献[3]および[4]において、この実験結果について検討を行っているが、本論はこれらに続くものである。試験体一覧を表1に示す。実験変数は、 鋼管の材質が40キロ鋼,60キロ鋼,80キロ鋼、コンクリートのシリンダー強度。σ B が約25 MPa,40 MPa,80 MPa、径厚比の範囲が16.7~152.0と幅広くとられている。鋼管は冷間曲げ加工されたもので、残留応力除去焼鈍は施されていない。鋼管の長さは外径の3倍で、材質ごとに板厚を一定としている。そのため径厚比により断面径が異なり、試験体の最大径(45cm)は最小径(10.8cm)やシリンダー直径(10cm)の4倍以上となるため、充填コンクリートの強度をシリンダー強度で画一的に評価することには問題があると考えた。本論ではコンクリート強度にスケールエフェクトを考慮することにし、その評価方法は文献[3]と同様、米国開拓局の実験結果[5]によった。

3. 最大耐力時の軸圧縮ひずみ

図1に各試験体の ε uと sNo/Noの関係を示す。 ε u は実験において最大耐力を発揮した時の軸圧 縮ひずみであるが、一旦耐力が低下した後に再び耐力上昇に転じて最大耐力を発揮した試験体に

-1431-

^{*1} 九州大学助手 工学部建築学科、工修(正会員)

^{*2} 九州大学教授 工学部建築学科、工博(正会員)

	1					充填コンクリ	コンクリート充填鋼管の軸圧縮耐力				最大耐力		
試験体名	外径	板厚	 径厚比	降伏応力	シリンダ 一強度	-トの強度	実験値	単純累加			時ひずみ	αu	
	D(mm)	t(mm)	D/t	sσy(MPa)	cσB(MPa)	cσp(MPa)	exNu(kN)	No(kN)	exNu/No	sNo/No	εu(%)		
CC4-A-0	148.5	2.96	50.2		_	_	460	384	1.20	1.00	1.21	-	
CC4-A-2	149.2	2.96	50.4		25.4	24.6	941	782	1.20	0.49	4.45	0.295	
CC4-A-4-1	148.9	2.96	50.3		40.5	39. 3	1064	1016	1.05	0.38	1.13	0.084	
CC4-A-4-2	149.2	2.96	50.4		40.5	39.3	1080	1019	1.06	0.38	0.92	0.106	
CC4-A-8	149.4	2.96	50.5		77.0	74.6	1781	1592	1.12	0.24	0.78	0.355	
CC4-C-0	300.5	2, 96	101.5			_	784	784	1.00	1.00	0.46	_	
CC4-C-2	300.5	2.96	101.5	283	25.4	22.4	2382	2308	1.03	0.34	0.95	0.063	
CC4-C-4-1	300.2	2, 96	101.4	(0, 69)	41.1	36.2	3277	3244	1.01	0.24	0.41	0.028	
CC4-C-4-2	300.2	2.96	101.4		41.1	36.2	3152	3244	0.97	0.24	0 42	-0.076	
CC4-C-8	300.5	2 96	101 5		80 3	70 7	5530	5603	ñĝ	0 14	0.45	-0.052	
CC4-D-0	449.7	2.96	151 9		-	_	1134	1177	0.96	1 00	0.28	-	
CC4-D-2	450 0	2 96	152 0		25.4	21.2	4415	4459	0.00	0.26	0.31	-0 024	
CC4-D-4-1	449 8	2.96	152.0		41 1	34 3	688â	6489	1 06	0 18	0.20	0 223	
CC4-D-4-2	450.0	2.96	152 0		41 1	34.3	6985	6494	1 08	0.18	0.30	0.202	
CC4-D-8	449 9	2.96	152.0		85 1	71 1	11664	12184	0.96	0 10	0.31	-0 269	
CC6-A-0	121.6	4, 54	26.8				1062	966	1,10	1.00	1.79	-	
CC6-A-2**	121.9	4, 54	26. 9		25.4	25.1	1509	1219	1. 24	0.79	5.12	0.215	
CC6-A-4-1	121.8	4, 54	26.8		40.5	40.0	1657	1367	1.21	0.71	3.82	0.216	
CC6-A-4-2	121.8	4.54	26.8		40.5	40.0	1663	1367	1.22	0.71	3.91	0.221	
CC6-A-8	121.5	4.54	26.8		77.0	76 1	2099	1720	1 22	0.56	1 37	0 289	
CC6-C-0	238.4	4.54	52.5		_	-	1770	1930	0.92	1 00	0.65	0. 200	
CC6-C-2	238.5	4.54	52.5	579	25.4	23.1	3035	2887	1 05	0.67	1 80	0.051	
CC6-C-4-1	238.2	4.54	52.5	(0, 90)	40.5	37 0	3583	3452	1 04	0.56	0.95	0 045	
CC6-C-4-2*	238.1	4.54	52.4	(0.00)	40.5	37.0	3600	3450	1.04	0.56	1.04	0.052	
CC6-C-8	237.8	4.54	52 4	1	77 0	70.3	5578	4814	1 16	0.40	0.78	0.283	
CC6-D-0	359.9	4.54	79.3		_	-	2776	2032	0.95	1 00	0.60	0. 200	
CC6-D-2*	360.6	4.54	79.4		25.4	21.9	5625	5060	1, 11	0.58	1.52	0.13	
CC6-D-4-1	360.6	4.54	79.4		41 1	35.3	7259	6364	1 14	0.46	0.64	0 211	
CC6-D-4-2	360.2	4, 54	79.3		41.1	35.3	7045	6353	1.11	0.46	0.73	0.161	
CC6-D-8	360.4	4.54	79.4		85.1	73. 2	11504	10028	1, 15	0. 29	0.63	0.363	
CC8-A-0	107.6	6.47	16.6		_	_	1933	1715	1.13	1.00	1.73	-	
CC8-A-2	108.0	6.47	16.7		25.4	25.5	2275	1903	1.20	0.90	3.98	0.159	
CC8-A-4-1	108.5	6.47	16.8		40.5	40.7	2446	2022	1.21	0.86	4.00	0.181	
CC8-A-4-2	108.1	6.47	16.7		40.5	40.7	2401	2013	1.19	0.86	4.22	0.166	
CC8-4-8	108.3	6.47	16.7		77.0	77.3	2712	2279	1.19	0.76	2.08	0.186	
CC8-C-0	221. 9	6.47	34.3		-	-	3832	3654	1.05	1.00	0.74	_	
CC8-C-2*	222.1	6.47	34. 3	835	25.4	23.4	4964	4463	1.11	0.82	1.91	0.094	
CC8-C-4-1*	222. 2	6.47	34.3	(0.95)	40.5	37.5	5637	4948	1.14	0.74	1.68	0.131	
CC8-C-4-2	221. 9	6.47	34.3		40.5	37.5	5714	4939	1.16	0.74	2.17	0.148	
CC8-C-8	222.4	6.47	34.4		77.0	71.1	7304	6112	1.19	0.60	1.17	0.232	
CC8-D-0	336.4	6.47	52.0		-	-	5785	5596	1.03	1.00	1.22	_	
CC8-D-2'	336.9	6.47	52.1		25.4	22.1	8457	7423	1.14	0.76	1.79	0.126	
CC8-D-4-1	336.5	6.47	52.0		41.1	35.7	9668	8533	1.13	0.66	1.20	0.139	
CC8-D-4-2	336.7	6.47	52.0		41.1	35.7	9834	8540	1.15	0.66	1.28	0.159	
CC8-D-8	336.6	6.47	<u>52.0</u>		85.1	73.8	13775	11675	1.18	0.48	0.88	0.266	
注) 1. 試験体名	3肩付きの *は	、一旦耐力但	下を生じた後	に再び耐力が上	昇して最大耐力	に達したが、第	ーピーク点を	大耐力点と	した試験体を示	す。			
2. 試験体名肩付きの **は実験終了まで耐力低下を生じていない試験体を示す。 3. 9								1. 鋼管の降伏応力は全て 0.2%offset 法によって定められたもの。					
4. 測官の時15応力の値の()内は時伏比を示す。 5 6 Nosaskia.n.c.k ski御佐の断面論 cki本協コソル-kの断面論 7							5. 充実 コンクリートの強度は スケールスフェクトを考慮したもの。 7. cm-星ナ散カ時の時におれざす						
8.exNu:最大耐力実験値(実験で得られた最大軸力) 9							1. cu: 取入mのJmyの存在型US9 ク 9. cu: 最大耐力時の鋼管の周方向応力の降伏応力に対する比						

表1 試験体一覧

8. exNu: 最大耐力実験値(実験で得られた最大軸力)

ついては最初のピーク時のひずみをとっている。 sNo/Noは鋼管の降伏軸力(sNo=sσy•As ここで、 sσyは鋼管の降伏応力、Asは鋼管の断面積)と単 |純累加軸圧縮強度(No=sNo+cNo, cNo=cのp・A。 こ こで、。σ,はスケールエフェクトを考慮したコン クリート強度、A。は充填コンクリートの断面積) の比である。図から分かるようにε」と_sN_o/N_oに は相関関係があり。 N_o/N_o の小さい試験体ほど ε_u が小さくなる。。N。/N。< 0.3の試験体には0.5%以 下の非常に小さなひずみで最大耐力に達する試験

図1 最大耐力時ひずみ $\varepsilon_{u} \geq_{s} N_{o}/N_{o}$ の関係

体がある。 $N_{\circ}/N_{\circ} > 0.5$ の試験体では1体(CC6-C-4-1)を除き ε_{u} は1.0%を上回っている。また、 図1をみると ε uが2.5%以下の試験体と3.5%を超える試験体とに大きく分かれている。後者は軸 圧縮ひずみが5%に達しても最大耐力の95%以上の軸力を保持している試験体で、荷重-変形関 係に明確なピークを持たない。したがって、これらの実験結果にはひずみ硬化の影響が大きく入 っていることが考えられる。

"N。/N。は文献[3]に示したように拘束効果の大きさをを表す指標となるが、径厚比D/t(A。/A。= 4t/Dの関係がある)、コンクリート強度。σ_ρ、鋼管の降伏応力。σ_yの複合パラメータである。そこ で各因子の影響をみるために横軸にD/tをとり、またD/t=50の試験体について横軸に。σ,をとり、 ε uとの関係を示したのがそれぞれ図2、図3である。図はコンクリート強度別に分けて示してお

-1432-

り、中空鋼管試験体の ε_u も白抜きで示している。 なお、中空鋼管試験体の最大耐力はほぼ降伏軸 力計算値(_sN_o)に達している(表1参照)。図2、 図 3 より、 ε_{u} は径厚比が大きくなるほど、コン クリート強度が大きくなるほど小さくなり、鋼 管の材質にはあまり影響されないことが分かる。 σ_{B} =80MPaの試験体の ε_{u} は、シリンダー試験 における強度時ひずみ(0.280~0.304%)よりは 大きいが、中空鋼管試験体より小さくなるもの もある。また、D/t=152の試験体は、コンクリー ト強度に関わらず中空鋼管試験体とほぼ同じひ ずみで最大耐力に達している。河野らの解析的 研究[6]によれば、相互拘束効果により鋼管の 局部座屈が耐力低下に及ぼす影響は小さいと考 えられるが、このように径厚比が非常に大きい 場合は局部座屈が耐力低下の原因となる可能性 がある。

4. 最大耐力時の鋼管の周方向応力

各試験体の実験結果より算出した最大耐力時 の鋼管の周方向引張応力。 σ_{su} の降伏応力。 σ_{y} に 対する比 α_{u} の値を、表1に示す。算出において はコンファインドコンクリートの強度上昇を表 す拘束係数kを4.1とし、von Misesの降伏条件を 仮定した以下の関係式[7]を用いた。なお、下 式においては圧縮を正として示している。

ただし、本論では。 xN_u の値を実験で得られた 最大軸力としたため、 ε_u が大きくなる試験体の α_u の値にはひずみ硬化の影響が含まれているこ とに注意する必要がある。図4、図5は縦軸に α_u の値を取り、その他は図2、図3と同じで示 図5

-1433-

したものである。図からはα」の値と、径厚比や 材料強度との相関関係は明確にはみられない。図 4に示すように、α ωの値の平均値は著者らが文 献[3]において。xNu/N。とsNo/Noの関係の回帰分 析結果より定めた α₁=0.159(λ=0.229,(1)式、 図6参照)となっているが、そのばらつきは大き い。これは、(1)に示すように α_{u} , β_{u} の値はN。 からの耐力上昇を直接表現する指標であり、CF T柱の耐力上昇量はせいぜいN。の20%程度である ことから、耐力実験値のばらつきが α_{u} , β_{u} の値 に大きく反映されるためである。また、拘束効果 だけでなく、ひずみ硬化、材料強度等のばらつき、 実験誤差などの影響も含まれる耐力上昇(低下)量 を、全て α_{u} , β_{u} の値の違いとして処理すること も一因であると考えられる。図4と図6を見比べ れば、α ωの値のばらつきに対して、耐力実験値 (.xNu/No)のばらつきがさほど大きくはならない ことが分かる。特に(1)式に示されるように。No/ N。が小さい場合にこの傾向が強くなり、D/t=152 の試験体のα」の値の大きなばらつきは、この要 因に拠る所が大きいと考えられる。また、 。σ Β= 80MPaの試験体の α_u の値のばらつきが大きく、D/ t>80では。 σ_{B} =25.40MPaの試験体の α_{u} の値より 小さい値となっているのに対し、D/t<80では逆 に大きな値となっている。

5. CFT柱における相互拘束作用に関する考察

図7(a)~(c)は、著者らが行った弾塑性解析 [8]や、H.K.Sen[9]、岡本ら[10]、福田ら[11] が行った実験で得られたひずみ測定値を用いた鋼 管の応力の塑性解析結果を参考にして作図した、 中心圧縮力を受けるCFT柱における鋼管の応力 ・ひずみ状態の模式図である(ただし、ひずみ硬 化は無いものとしている)。この模式図の意味す るところは以下の通りである。中心圧縮力を受け る場合、低応力時は鋼管のポアソン比がコンクリ –トのそれよりも大きいため、両者の間に隙間が 生じて相互作用は生じない。コンクリートが降伏 して体積膨張すると相互作用が生じ、鋼管に周方 向引張応力。 σ_o が発生する。。 σ_o の値は軸方向ひ

ずみの増大とともに大きくなるが、軸方向ひずみがある水準に達すると(ひずみ硬化がなければ) 一定値に収束して鋼管の応力状態は安定する。これはコンクリートの体積膨張がその拘束力の下 で終り、拘束効果による柱の耐力上昇が終わったことを意味する。この時の。 σ 。の値は鋼管の周 方向ひずみと軸方向ひずみの比。 ε 。/、 ε と大きく関係する。鋼管の塑性流れ則がミーゼスの降伏 条件に関連するとすれば、。 ε 。と。 ε の塑性ひずみ増分比が0.5であれば。 σ 。は零となり、。 ε 。/ 。 ε 2の値が大きいほど大きな。 σ 。が発生していることになる。文献[8]、[9]、[10]、[11]より、 鋼管の応力状態が安定する時の軸圧縮ひずみはほぼ1%程度と推察される。よって、3節でみら れた。N。/N。が小さく、最大耐力時の軸圧縮ひずみ ε いが0.5%程度である柱では、。 σ 。の値が大き く変化(増加)している時に最大耐力に達することになり、 ε の値が拘束効果を評価する上で重要 となる。

著者らは文献[12]で、コンクリート強度が約35MPaの試験体について径厚比が大きくなるほど耐力時の鋼管の周方向応力の降伏応力に対する比 α_u の値が大きくなるとした。その実験的根拠は図8に示す。 $\varepsilon_{\theta}/s \varepsilon_{z} - \varepsilon_{z}$ 関係である(径厚比が大きいほど。 $\varepsilon_{\theta}/s \varepsilon_{z}$ が大きくなっている)。一方岡本らは文献[10]で、約100MPaの高強度コンクリートを用いた試験体について径厚比が大きくなるほど α_u の値が小さくなるとしている。両者は相反する見解のように見えるが本質的に矛盾するものではなく、 ε_u の大きさの違いを考慮すれば説明が可能である。岡本らの実験においては ε_u が0.5%前後と小さく、径厚比が大きいほど ε_u の値が小さくなるために前述したような結果が得られたと考えられ、岡本らが行った鋼管の応力の解析結果をみると同軸圧縮ひずみ時の。 σ_{θ} の値は径厚比が大きいほど大きくなっており、これは著者等が得た結果と一致する。また、この岡本らの解析においては。 σ_{θ} 、即ちコンクリートへの拘束力が増大している過程で早期に耐力低下が生

じることが示されている。これはi)コンクリー トは高強度になるほど脆性的な性質が増すこと、 ii)CFT柱では帯筋や鋼管で横補強されたコ ンクリート柱とは異なり、前述した隙間の存在 のためにコンクリートが降伏してから拘束力が 働くことなどが影響しているものと考えられる。

コンクリート強度と鋼管の応力状態の間の定 性的な関係は、高強度コンクリートでは脆性的 な性質が強くなること、肖が提案したコンクリ ートの塑性流れ則[13]に見られる性質および著 者らが行ったコンクリート強度を変数とした実 験[14]で得られた。 $\varepsilon_{\theta/s} \varepsilon_{z-s} \varepsilon_{z}$ 関係(図9)の 3つのことから推察すると、コンクリート強度 が高くなるほど体積膨張が大きくなり、同軸圧 縮ひずみでは大きな。 σ_{θ} が生じると考えられる。 3節で述べた。 σ_{B} =80MPaの試験体でD/t<80の 場合、 ε_{u} の値が小さいにも関わらず、他のコ ンクリート強度の試験体より α_{u} が大きくなる ことはこのことを示唆しているといえる。

以上の考察より、拘束効果(α ωの値)の評価

図8 鋼管のひずみ性状に及ぼす径厚比の影響[12]

図9 鋼管のひずみ性状に及ぼすコンクリート強度の影響[14]

について以下のことがいえる。高強度のコンクリートを用い径厚比の大きい鋼管を用いるほど、 コンクリートの体積膨張は大きくなりα ωの増大要因となるが、一方でそれのもつ脆性的な性質の ために最大耐力時の軸圧縮ひずみε」が小さくなり、このことがα」の減少要因となる。反面、コ ンクリート強度が低くなり径厚比が小さくなることはα ωの減少要因となるが、 ε ωが大きくなり 拘束効果が十分に発揮され、ひずみ硬化の影響で見かけ上のα」の値が大きくなることもある。し たがって、α ωの値は本質的には径厚比、材料強度等に依存すると考えられるが、対象とする柱の コンクリート強度や鋼管の強度、径厚比の範囲を広くとれば各因子による影響が相殺されること になる。図4においてα «と径厚比、材料強度の間に明確な相関関係が見られないのもそのためと 考えられ、本論で用いた手法によって各因子の影響を明かにすることは困難であるといえる。し かしながら、図4と図6の比較から分かるように、α ωの値のばらつきは軸圧縮耐力にさほど大き な影響は及ぼさないと考えられる。よって、広範囲に適用できる簡便な設計式としては、既往の 研究で提案されているようにα」の値を一定値としてもよいものと考える。

6. 結論

コンクリート充填円形鋼管短柱の、幅広い実験変数の範囲で行われた中心圧縮実験結果の検討 と、既往の拘束効果に関する研究をもとに考察を行い、以下の結論を得た。

1)最大耐力時の軸圧縮ひずみ ε_u の大きさは $_sN_o/N_o$ と相関関係があり、 $_sN_o/N_o$ の小さい試験体ほど ε_u が小さくなる。 ε_u の値はコンクリート強度が高いほど、径厚比が大きいほど小さくなるが、 鋼管の材質にはあまり影響されない。

2)最大耐力時の鋼管の周方向引張応力の降伏応力に対する比α」の値は、本質的には径厚比、コン クリート強度、鋼管の強度、 ε uの値に依存すると考えられるが、対象とする柱の材料強度や径 厚比を広範囲にとると各因子による影響が相殺し合うため、その影響が薄れて明確な(有意義な) 相関関係が見られなくなる。

[謝辞] 本研究を実施するにあたりハイブリッド構造に関する日米共同構造実験研究 CFT分科会の委員には 中心圧縮実験のデータを提供して頂きました。ここに深く感謝致します。

[参考文献]

- [1]向井昭義ほか:ハイブリッド構造に関する日米共同構造実験研究 CFT-1~3, 日本建築学会大会学術講演梗概集C-1, [2]最相元雄ほか:高強度コンクリート充填鋼管短柱の拘束効果と終局耐力に関する実験的研究,構造工学論文集, Vol.
- 121歳470年はか、高速度コンクリード元頃銅管型社の拘束効果と終向耐力に関する実験的研究,構造工学論文集, Vol. 428, pp. 351~359, 1996.3 [3]崎野健治ほか:コンクリート充填鋼管短柱の曲げ性状に関する研究, コンクリート工学年次論文報告集, Vol. 18, No. 2, pp. 1289~1294, 1996.7 [4]崎野健治ほか:コンクリート充填鋼管短柱の中心圧縮性状に関する研究, 日本建築学会研究報告中国九州支部, 第10
- ト充填鋼管短柱の中心圧縮性状に関する研究,日本建築学会研究報告中国九州支部,第10 号1, pp. 693~700, 1996.3
- [5]R.F.Blanks and C.C.Mcnamara: Mass Concrete Tests in Large Cylinders, ACI Journal , Procs. Vol.3, pp. 280 ~ 303, Jan. Feb. 1935 [6]河野昭彦ほか: 円形鋼管とコンクリートの合成断面短柱の軸圧縮下局部座屈挙動, 鋼構造年次論文報告集, 第1巻,
- [8] 蜷川利彦ほか:コンクリート充填鋼管短柱の中心圧縮曲げ性状,コンクリート工学年次論文報告集, Vol. 18, No. 2, pp. 1307~1312, 1996.7
- [9]Sen,H.K. : Triaxial effects in concrete-filled tubular steel columns, A thesis presented for the degree of Ph.D. in the University of London, 1969.7 [10] 岡本達雄ほか:高強度遠心成形鋼管コンクリート柱の圧縮耐力に関する実験的研究,日本建築学会構造系論文集,

- [10] 岡本達雄 はか: 高強度退心成形期官コングリート社の圧縮的力に対する天映的研充, ロや建業子云博垣示爾入来, 第469号, pp. 137-147, 1995.3
 [11] 福田浩司 ほか:コンクリート充填60キロ級高張力鋼鋼管の軸圧縮挙動(その2), 日本建築学会大会学術講演梗概集 C, pp. 1799~1780, 1993.9
 [12] 蜷川利彦ほか:コンクリート充填円形鋼管柱の弾塑性性状に関する研究(その1~4),日本建築学会大会学術講演梗 概集C-1, pp. 1735~1738, 1996.9
 [13] 肖岩ほか:コンファインドコンクリートの構成則に関する研究(その1~4),日本建築学会大会学術講演梗概概集, m 025~042 1000 10
- pp. 935~942, 1989. 10
- [14] Sakino, K et.al. : Behavior of concrete filled steel steel tubular columns under concentric loading, Proceedings of the third international conference on steel-concrete composite structures, pp.25 \sim 30, 1991.9