論文 外ケーブルに連続繊維緊張材を用いた PC 桁の曲げ破壊耐力に 関する研究

真鍋 英規*1・井上 晋*2・眞嶋 光保*3・林田 充弘*4

要旨:本研究では,連続繊維緊張材(炭素繊維,アラミド繊維)を外ケーブルとしてP CブロックT桁の補強に用いる場合の曲げ挙動・破壊耐力の把握及び補強効果の確認を 目的とし,モデル桁を用いて曲げ破壊実験を行った。実験では,外ケーブルに連続繊維 緊張材を用いた場合とPC鋼材を用いた場合の比較検討を行い,ほぼ曲げ破壊耐力が同 等であること,終局時の外ケーブル張力の増加量の違い等が明らかとなった。また,複 合非線形条件を考慮したフレームモデル解析を行った結果,解析値と実験値が良く合致 しており曲げ終局耐力の算出に本解析手法が有効であることが確認できた。 キーワード:連続繊維緊張材,外ケーブル,曲げ破壊耐力,非線形解析

1. はじめに

PC桁の補強方法の一つとして最近注目を浴びている外ケーブル工法がある。外ケーブル工法 は構造物断面の外部にケーブルを配置する構造上,ケーブル緊張材の防錆処理が課題となるが, その対応策には,緊張材に腐食しない連続繊維緊張材を用いることが考えられる。連続繊維緊張 材は鋼材型の腐食をしない他に,PC鋼材と同等以上の高い引張強度を有すること,軽量である こと等,外ケーブルに使用する利点がある。一方,連続繊維緊張材は降伏点を持たない脆性材料 であること,弾性係数が低いこと等,PC鋼材とは違った特性を有しており[1],外ケーブルに 使用する場合の問題点の検討が必要となる。しかし,外ケーブルに連続繊維緊張材を用いたPC桁 に関する既往の研究・実験は少なく,その補強効果や終局時の挙動等は必ずしも明らかにされて いないのが現状である。また,外ケーブル構造は付着のある内ケーブル構造と異なり断面の平面 保持則が成立しないため,従来の設計法では正確に終局耐力を評価することは難しく,簡便で正 確に安全性を評価できる解析・設計手法の確立がまたれるところである。

本研究では,連続繊維緊張材を外ケーブルとしてPCブロックT桁の補強に用いる場合の補強 効果の確認および終局耐力・終局挙動の把握を目的とし,モデル桁を用いて曲げ破壊実験を行っ た。また,材料非線形条件と幾何学非線形条件の複合非線形条件を考慮したフレームモデルを用 いた解析(以下非線形フレーム解析と称す)を行い,実験値との整合性を確認した。

2. 実験概要

2.1 試験体

阪神高速道路環状線では昭和40年代初頭に施工された単純PCポステンションブロックT桁 が現在まで供用されている。外ケーブルによる実構造物の補強を念頭に置き、本実験ではこのブ

- *1 (株)富士ピー・エス 大阪支店 技術部 (正会員)
- *2 大阪工業大学助教授 土木工学科,工博 (正会員)
- *3 大阪市立大学助教授 工学部土木工学科,工博 (正会員)
- *4 阪神高速道路公団 保全施設部

ロック桁を対象とし,約1/2.5のモ デル桁を製作した。図-1,2に 試験体の構造を示す。

本実験では外ケーブルの種類を 実験要因としたが、PC 鋼材を外ケ ーブルとして用いる場合の補強効 果は各方面で報告されており、施 工実績も多数あることから、実験 の比較の基本をPC鋼材を用いる 試験体(CASE-1; PC 試験体)とし,

表−1 外ケーブル特性値

	単位	CASE-1	CASE-2	CASE-3	
使用緊張材		SWPR7B 1T12.7	CFRP 7 \$\$\phi\$15.2	AFRP FA15	
外ーブル種類		PC 鋼より線	PAN系炭素繊維	パラ系アラミド繊維	
使用マトリックス			14 彩系樹脂	球杉樹脂	
公称径	mm	12.7	15.2	14.7	
公称断面積	mm ²	98.71	113.60	170.00	
弓腰鍍	kgf/mm ²	190	180	140	
降伏点応力度	kgf/mm ²	160			
弹性係数	kgf/mm ²	19500	14000	7000	
保证财荷重	tf	{18.7}	20. 3	24.0	
破断伸び	%	6.4	1.6	2.0	
リラクセーション率	%	1.4	2.5	10.0	
			₩ {	内お服鍍	

連続繊維緊張材は炭素系連続繊維緊張材を用いる試験体(CASE-2; CFRP.試験体)とアラミド 系連続繊維緊張材いる試験体(CASE-3; AFRP 試験体)とした。使用した外ケーブルの特性値 を表-1に示す。試験体(主桁,ブロック目地)のコンクリートの目標強度はfck=460kgf/cm² とした。鉄筋はSD295を使用した。ポストテンション方式の内ケーブルはPC鋼より線 SWPR7B 1T12.7mm(CASE-1の外ケーブル PC 鋼材と同一のもの)を5本用い, グラウトを行った。 デビ エータは鋼製サドルに曲げ上げ半径(R=3m)の半円形状の溝を切削し,すべり構造として高分 子ポリエチレンシートを設置した。支点側中間横桁2ヶ所にデビエータと支間中央にはすべり構 造を有する高さ保持サドルを取り付けた[2]。外ケーブル定着ブラケットは、ブラケット部での

破壊を防ぐため主桁と一体構造とし、 PC 鋼棒 SBPR 785/1030 Ø 23mmをブラケット1ヶ所当たり4本配置した。 現在一般的に施工されている PC 桁のブロック目地構造は, せん断キーを有し接合面に接着剤を塗布する方式である。 しかし,昭和40年代初頭に施工されたものは、ブロック間 に 10cm の間隙を設けコンクリートを打設する方式であり, 目地部にはせん断キーはなく、鉄筋は不連続なものであっ た。試験体においても、実際の構造と同様にブロック目地 を5 cm 設けPC鋼材のみ連続とする構造とした。

載荷は、試験体の支間を 10.48m とし、支間中央から左 右 0.75m の位置に 2 点集中荷重を静的載荷することとし

560 標準部 橫桁部 560 680 120 55656555 <u>外ケーブ</u>ル 240 SWPR7B 1T12.7 図-1 試験体断面構造図

図-2 試験体側面構造図

-1546-

た(図-2)。なお,死荷重作用時の曲げ応力状態を実際の橋梁と一致させるため,試験体に カウンターウエイトを設置した。載荷ステップは,①内ケーブルだけの状態で計算ひび割れ荷重 まで載荷,②除荷後に外ケーブルの緊張,③外ケーブル補強後の計算ひび割れ荷重まで載荷,④ 破壊荷重まで載荷,とした。なお,荷重の増分は1tfを基本とした。各ケーブル緊張時にはケー ブルのひずみとコンクリートひずみを測定し,載荷実験時には試験体桁の各ひずみ(コンクリー ト,鉄筋,内ケーブル)とたわみ,外ケーブルの張力とひずみ,ブロック目地部の開口量と鉛直 変位,等を測定した。

表-2 実験結果

3. 実験結果と考察

3.1 ひび割れ・破壊形態

表-2に載荷試験における各試 験体のひび割れ荷重,破壊荷重等 の実験結果の比較を示す。

外ケーブル種類	初期ひび	初期ひび	破壊荷重	破壞形態	終局時中央
	割れ荷重	割れ部位			<u>たわみ(mm)</u>
CASE-1 PC	6.0tf	目地下縁	30.5tf	上縁圧壊	*
CASE-2 CFRP	7. 8tf	目地下縁	30.7tf	上縁圧壊	262
CASE-3 AFRP	7. 2tf	目地下縁	30.1tf	上縁圧壊	267

※ 測定データ無し

初期ひび割れ発生箇所(目視)は全試験体ともブロック目地部下縁からであった。PC試験体 でのひび割れ発生範囲はほぼ支間中央のブロック目地間隔 2.8mの間であったが、CFRP 試験体, AFRP 試験体の順でひび割れの発生範囲はブロック目地より支点側へ広がる傾向にあった。

破壊形態は、全ケースとも支間中央側の載荷点付近でのコンクリート上縁の圧壊であり、上縁 の圧壊が起こると同時に桁下縁までコンクリートが破壊し、完全に桁が2つに折れた状態であっ た。実験では、外ケーブル種類以外の条件を同一としているため、外ケーブルの増加張力の違い が終局耐力に影響及ぼすことになる。しかし、破壊時の載荷荷重は30.1tf~30.7tf となり、顕著 な差違は認められなかった。これは、外ケーブルの全ケーブルに対する比率が比較的小さいため、 外ケーブル増加張力の違い(3.3 で後述)は、終局耐力に大きな影響を及ぼさなかったと考える。 また、非線形フレーム解析(4.で後述)で求めた終局荷重も28.2tf~30.2tf であり、3ケースの 試験体の終局耐力はほぼ同程度となることが確認されている。せん断キーがなく鉄筋も不連続で あるブロック目地が終局状態では弱点となるのではないかとの懸念があったが、本実験では支間 中央(曲げモーメントー定区間)での曲げ破壊となり、目地部が破壊に対して支配的要因とはな らなかった。

3.2 たわみおよびコンクリートひずみ挙動

図-3に各ケースの支間中央における荷重とたわみ量の関係を示す。また,表-3に外ケーブ ル引張剛性と試験体曲げ剛性の値を示す。各試験体の曲げモーメントー定区間内におけるひび割 れ発生荷重は、PC試験体が11tf、CFRP 試験体が10tf、AFRP 試験体が9tf であったが、荷重

時付近で変曲点が認められる。ひび割 れ発生以降の各荷重段階でのたわみ量 は P C 試験体が最も小さく,次に CFRP 試験体であり,最も大きなたわ み量を示したのが AFRP 試験体であっ た。これは,各試験体の外ケーブル引 張剛性の相違による試験体曲げ剛性の 相違および外ケーブルプレストレスの

一たわみ曲線もこれらのひび割れ荷重

表一3 外	ケーフ ルら 分	長剛性と	試験体田	け剛性

試験体	外ケーブル種類	引張剛性	試験体 I	コンクリートE	
		tf	m ⁴	kgf/cm ²	
CASE-1	PC 1T12.7B	1925	0.00679	3. 31E+05	
CASE-2	CFRP ϕ 15.2	1590	0.00677	3. 24E+05	
CASE-3	AFRP FA15	1190	0.00674	3. 21E+05	
注)・引張剛性は外ケーブル1本当たりの値					

・試験体 I は外ケーブルを換算した断面二次モーメント

・コンクリートEは試験体コンクリートの弾性係数

増加張力の相違によって生じたと考えられる。

終局荷重におけるたわみ量は量は CFRP 試験 体が 262mm, AFRP 試験体は 267mm であり, 終局荷重と同様, ほぼ等しい値であった。

図-4に各ケースの支間中央における荷重-コンクリート上縁ひずみの関係を示す。同一荷 重値におけるひずみ値は,たわみ量の傾向同様 に,PC試験体,CFRP試験体,AFRP試験体の 順で大きなひずみ値を示している。終局荷重付 近(P=25tf以上)では,PC試験体では曲線的 なひずみの増加を示すが,降伏点を持たない連 続繊維緊張材を使用した試験体では,折れ点を 持つ直線的なひずみの増加を示している。

ブロック目地部上縁およびその周辺のコンク リートのひずみには顕著なひずみ値は計測され ておらず,目地部への局部的な応力集中はなか ったと言える。

荷重とたわみ,荷重とコンクリートひずみ関 係の比較では,連続繊維緊張材はPC鋼材と概 ね同様の傾向であると言える。

3.3 外ケーブルの増加張力

外ケーブル工法は、コンクリート断面と外ケ ーブルのひずみが異なり、付着のある内ケーブ ル工法で成立する平面保持則が成り立たない。 これは、構造物の変形が小さい使用状態では、 平面保持則が成立するものとさほど差異はない が、変形が大きな終局状態では厳密な計算が必 要となる。外ケーブルに降伏点を持たない連続 繊維緊張材を使用する場合、終局時の挙動を知 ることが特に重要となる。

図-5に荷重と外ケーブル増加張力の関係を

示す。3ケースとも、曲げモーメントー定区間にひび割れが発生した載荷荷重(P=9~11tf)ま ではほとんど外ケーブル張力の増加は見られなかった。しかし、コンクリートにひび割れが発生 し試験体桁の曲げ剛性の低下が進行するとともに、外ケーブル張力は緩やかに増加する、PC試 験体ではそのまま増加し続け破壊に至ったが、CFRP 試験体と AFRP 試験体では、載荷荷重 P =25tf を越える時点(内ケーブル降伏点)から急激な張力増加が見られ、最終的な増加張力は P C試験体を上回り破壊に至った。これは、PC試験体では、終局時の外ケーブル応力度は降伏点を 越えているため、終局状態での急激な桁の変形に対し急激な応力増加とはならなかったが、CFRP、 AFRP には降伏点がないため、終局時の急激な桁の変形によって急激な応力増加が生じたと考え られる。本実験では、外ケーブルの破断による破壊とはならなかったが、降伏域をもたず、鋼材

図-5 荷重-外ケーブル増加引張力曲線

ほど終局伸びが大きくない連続繊維緊張材では,外ケーブルの初期張力は終局時の増加張力を正 確に把握して設定する必要があると考える。

4. 非線形フレーム解析

外ケーブル方式PC桁の終局曲げ耐 力を正確に評価するには,材料非線形 条件と幾何学非線形条件を同時に考慮 して解析を行う必要がある。本研究で は比較的簡便にモデル化が可能なフレ ーム解析を行った。

図-6にフレーム解析モデルを示す。 桁を梁要素,外ケーブルは軸力のみ受 け持つトラス要素とした。内ケーブル はコンクリートと付着のある要素とし て扱い,各桁断面図心からの高さを考 慮した。ブロック目地はコンクリート に引張強度がない要素として扱い,デ ビエータ部分は剛体要素と外ケーブル 要素が滑ることが可能なバネ要素の併 用モデルとした。材料の非線形性は.

コンクリート,鉄筋,内・外ケーブル, それぞれの応力-ひずみ関係をモデル 化し評価した。断面の変形性能は,断 面を水平方向に層状に分割し,各層領 域毎の応力-ひずみ関係から評価する

<u>項</u> 目		 単位	CASE-1	CASE-2	CASE-3
外ケーブル種類			PC鋼材	CFRP	AFRP
ひび割れ荷重					
ブロック目地	実験値 Acb	tf	6. 0	7.8	7.2
	設計值 Bcb	tf	7.4	7.4	7.4
	Acb/Bcb		0. 81	1. 05	0.97
	解析值 Ccb	tf	7.5	7.5	7.4
	Acb/Ccb		0.80	1.04	0.97
支間中央	実験値 Acc	tf	11	10	9
	設計值 Bcc	tf	9. 9	9. 9	9.9
	Acc/Bcc		1. 11	1. 01	0. 91
	解析值 Ccc	tf	10	9.9	9. 9
	Acc/Ccc	89 °	1.10	1.01	0. 91
破壊					
破壞形態			上縁圧壊	上緣圧壞	上縁圧壊
破壞荷重	実験値_Au	tf	30.50	30.70	30.10
	設計值 Bu	tf	24.25	24.29	24.23
	Au/Bu		1.26	1.26	1.24
	解析值 Cu	tf	28.20	30.15	28.90
	Au/Cu		1.08	1.02	1.04
支間中央たわみ	実験値 Ayu	mт	データ無し	262	267
	解析值 Cyu	mm	264.2	259.3	266.5
	Ауи/Суи		<u> </u>	1.01	1.00
外ケーブル					
種類			1T12.7B	\$\$15.2	FA15
特性值	降伏点荷重	tf	15.8		_
	保証破断荷重	tf		20.3	24.0
	引張強度	tf	18.7	25.9	24.25
初期引張力	実験値	tf	11.45	11.36	11.22
終局時增加張力	実験値 App	tf	6. 30	10.50	8.25
	解析值 Cpp	tf	6. 91	11.00	8.43
	Арр/Срр	tf	0. 91	0.95	0. 98
終局時張力	実験値	tf	17.75	21.86	19.47

表-4 実験値と解析値との比較

ものである。解析値と実験値の比較を表-4に、また、図-7にAFRP試験体の荷重-たわみ 曲線および図-8にCFRP試験体の荷重-外ケーブル応力度曲線を示す。各項目とも解析値と 実験値は非常に良く一致していることが判る。破壊荷重、破壊モード、終局時たわみ、終局時外

図-6 非線形フレーム解析のモデル

ケーブル増加張力等,桁の終局状態をほぼ正確に再現できたと言える。外ケーブルに連続繊維緊 張材を用いたPCブロック桁の終局曲げ耐力の算出に本非線形フレーム解析手法が有効であるこ とが確認できた。

5. まとめ

本研究のまとめを次にに示す。

- 1) 外ケーブルにPC鋼材を用いた試験体とCFRPおよびAFRPを用いた試験体を比較した場合, ひび割れ耐力・終局耐力ともほぼ同等であり,破壊形態も全て曲げモーメント一定区間内で のコンクリート上縁の圧壊となった。
- 2)荷重-たわみおよび荷重-コンクリート上縁のひずみ関係では、PC鋼材を用いた試験体と 連続繊維緊張材を用いた試験体と比較した場合、概ね同様であり、特に問題となる挙動は確 認されなかった。
- 3)外ケーブルの増加張力は、ひび割れが発生した後に顕著となり、桁の変形(たわみ)と線形 関係を保ち増加する。終局荷重付近では、降伏点を持たない連続繊維緊張材を用いた試験体 の方がPC鋼材を用いた試験体より張力増加は大きくなった。
- 4)外ケーブルとして降伏点を持たない連続繊維緊張材を用いる場合、外ケーブルの初期張力は 終局時の増加張力を正確に把握して設定する必要があると同時に、その破壊モードの選定も 重要になる。
- 5) 複合非線形条件を考慮したフレームモデル解析を行った結果,解析値と実験値は良く合致し ており,曲げ終局耐力の算出に本解析手法が有効であることが確認できた。

なお、本研究は、阪神高速道路公団「コンクリート構造物の耐久性に関する調査研究委員会」 の研究業務の一貫で行われた。同委員会各位には多大なご指導を頂くとともに、東京製綱(株), 神鋼鋼線工業(株),日本電子計算(株)には多大なご協力を頂いた。謹んで謝意を表します。

【参考文献】

- [1] 連続繊維補強材のコンクリート構造物への適用, コンクリートライブラリー72, 土木学会
- [2] 中田 順憲ほか: 偏向部を有する連続繊維マルチ緊張材の引張強度特性に関する実験的討, コンクリート工学年次論文報告集, Vol17, No.1, pp1173~1178
- [3] 睦好 宏史,町田 篤彦: FRP を外ケーブルに用いた P C はりの力学的性状および曲げ耐力,土木学会論文集 No.422/V-16, pp153~159, 1992.2