論文 CFRP 接着工法における炭素繊維シート付着耐力向上実験

岳尾 弘洋*1・松下 博通*2・矢原 輝政*3・佐川 康貴*4

要旨: CFRP 接着工法における付着応力分布の基礎式より導かれた応力集中係数と,鉄 片による引張せん断接着強度試験の結果より,炭素繊維シートの引張剛性を上げること で,炭素繊維シートの剥離終局荷重を増大させることが可能であるとの予測を得た。そ こで,炭素繊維シート定着部の引張剛性を大きくする定着方法(2層増貼り)と,機械 的に定着する方法(鋼板,アンカーボルト)とによりシートを定着した CFRP 補強コン クリート棒部材の両引き試験を行い,それぞれの定着効果を確認した。その結果,各定 着方法による供試体はいずれも剥離終局荷重が向上する傾向を示した。

キーワード: CFRP 接着工法,応力集中係数,引張剛性,増貼り,機械的定着

1. はじめに

CFRP 接着工法における部材の終局は、炭 素繊維シート(以下、「シート」と呼ぶ)の進 行性剥離によって起こり、シートの付着応力は 限られた区間のみに分布し、剥離の進行に伴い 移動することが、既往の知見として得られてい る ^{1), 2)}。また、本工法における、バイリニアモ デルの付着応カー相対滑り関係も近年発表され ている 2。本研究は、シートの剥離は付着応力 が最大付着応力に達した時に起こるという観点 より検討を始め、付着応力集中緩和を目的に研 究を進めた。まず、CFRP 補強コンクリート 棒部材をモデル化し、付着応力分布の基礎式を 導き付着応力集中緩和の方向性を示した。その 結果をもとに、鉄片による引張せん断接着強さ 試験を行い,パラメーターを特定した。その後, 付着耐力向上が期待できるような各種定着方法 により作製した CFRP 補強コンクリート棒部 材の両引き試験を行い、その効果を確認した。

2. 付着応力分布基礎式の誘導

ートの間に働く付着応力分布を得るため, 図-1のような弾性体モデルを考え,付着応力分布 基礎式を導いた。ここで,添え字 cf, c, a は, それぞれシート,コンクリート,接着剤を表す。 式の誘導にあたって,次の仮定を設けた。

- ・力のつり合いは、x方向のみを考える。
- ・接着剤の層は,せん断応力のみを伝える。

	シー	トが剥離する以前の, シー	-トとコンクリ ・微小区間 dx で τ (付着応力) は一定。
*	1	ショーボンド建設(株)	九州支店工事課(正会員)
*	2	九州大学大学院教授	工学研究科建設システム工学専攻 工博(正会員)
*	3	清水建設(株)	
*	4	九州大学大学院	工学研究科建設システム工学専攻

x=xとx=x+dx で囲まれた微小要素を各材料 に分割したものを, 図-2に示す。

微小区間 *dx* のシートに作用する力のつり合いから

$$P_{cfx} + dP_{cfx} + \tau \cdot b_{cf} \cdot dx - P_{cfx} = 0$$

$$\therefore \quad \tau_x = -\frac{1}{b_{cf}} \cdot \frac{dP_{cfx}}{dx} \tag{1}$$

外力と供試体内の力のつり合いから

$$P_{cfx} + P_{cx} = \frac{P_0}{2} \tag{2}$$

となる。

次に,フックの法則およびひずみと変位の関 係より

$$\sum_{cfx} = E_{cf} \cdot b_{cf} \cdot t_{cf} \cdot \varepsilon_{cf}$$
$$= E_{cf} \cdot b_{cf} \cdot t_{cf} \cdot \left(-\frac{\partial u_1}{\partial x}\right)$$
(3)

$$P_{cx} = E_c \cdot b_c \cdot t_c \cdot \varepsilon_c$$
$$= E_c \cdot b_c \cdot t_c \cdot \left(-\frac{\partial u_2}{\partial x}\right)$$
(4)

となる。ここで, u_1 , u_2 は, シートおよびコ ンクリートの変位である。

接着剤の層については、図-3より

$$\tau_x = G_a \cdot \gamma = G_a \frac{u_1 - u_2}{t_a} \tag{5}$$

となる。

式(1)~式(5)よりu1, u2を消去すると

$$\frac{d^2 P_{cfx}}{dx^2} - \alpha^2 P_{cfx} + \frac{\beta}{2} P_0 = 0$$
 (6)

ただし,

$$\alpha^{2} = \frac{G}{t_{a}} \left(\frac{1}{E_{cf} \cdot b_{cf} \cdot t_{cf}} + \frac{1}{E_{c} \cdot b_{c} \cdot t_{c}} \right) \cdot b_{cf}$$
(7)

$$\beta = \frac{G}{t_a} \cdot \frac{1}{E_c \cdot b_c \cdot t_c} \cdot b_{cf}$$
(8)

となり,これが付着応力分布の基礎式である。 x=0 で $P_{ctr} = P_0/2$ および x = L で $P_{ctr} = 0$ という境

界条件を用いれば式(6)の解として

$$\frac{P_{cfx}}{P_0/2} = (1-\eta)\cosh\alpha x$$

$$-\frac{(1-\eta)\cosh\alpha L + \eta}{\sinh\alpha L} \sinh\alpha x + \eta$$
(9)

ただし,

$$\eta = \frac{\beta}{\alpha^2} \tag{10}$$

を得る。

さらに,式(1)の関係から_てを求めると式(11) の双曲線関数になる。

$$\tau_{x} = \frac{P_{0}}{2} \cdot \alpha \cdot \frac{1}{b_{cf}}$$

$$\times \left\{ \frac{(1-\eta)\cosh\alpha L + \eta}{\sinh\alpha L} \cosh\alpha x - (1-\eta)\sinh\alpha x \right\}$$
(11)

$$\tau_{\max} = \frac{P_0}{2} \cdot \alpha \cdot \frac{(1-\eta) \cosh \alpha L + \eta}{\sinh \alpha L} \cdot \frac{1}{b_{cf}}$$
(12)

をとる。

ここで, 平均せん断応力τ ω を

$$\tau_{ave} = \frac{P_0/2}{b_{cf} \cdot L} \tag{13}$$

と定義し、応力集中係数³くとして付着応力の 最大値と平均せん断応力の比を考えると

$$\zeta = \frac{\tau_{\max}}{\tau_{ave}} = \alpha \cdot L \cdot \frac{(1 - \eta) \cosh \alpha L + \eta}{\sinh \alpha L}$$
(14)

となり, aL が十分大きいとすると,応力集中 係数くは,次のように近似できる。

 $\boldsymbol{\zeta} \coloneqq \boldsymbol{\alpha} \cdot \boldsymbol{L} \cdot (1 - \eta) \tag{15}$

式(15)において、 α を小さくすることでくが小 さくなり、応力集中を緩和できる。 α を小さく するには、式(7)において、工法上改良可能で ある接着剤の層厚 t_a とシートの引張剛性 $E_q \cdot A_q$ を大きくすればよいことになる。

これらの応力集中要因が,接着強度に及ぼす 影響を実験的に確認するため,標準的な含浸接 着剤を用いて基礎実験を行った。

3. 応力集中係数の各パラメータに対する 基礎実験

3.1 実験概要

接着剤の厚さおよび被着体の厚さ(引張剛性)をパラメータとして引張せん断接着強さ試験(JIS K 6850)を行った。

(1)供試体

供試体は、**図**-4に示すように、25×100mm の鋼板2枚(SS400)を、接着剤(CFRP 接着 工法で使用する含浸接着剤)により接着長さ 12.5mmで接着し、支持体を使い、引張実験中 に偏心がかからない様にした。

(2) 実験要因

引張せん断接着強度に対する,接着剤の厚さ の影響を調べるために,接着剤の厚さを 60~ 300μmの範囲で 10 種類に変化させた供試体 (鋼板厚 1.6mm 一定)を作成した。また被着 体の剛性の影響を調べるために,鋼板の厚さを 0.4,0.8,1.2,1.6,2.0mmと変化させた供試 体(接着剤厚は一定)を作成した。各要因にお いて,各々5本の供試体を作製した。

(3)実験方法

2.5tf 万能試験機により引張実験を行い破壊 に至るまでの最大荷重を測定した。引張せん断 接着強度は,式(16)により求め,5本の平均値 により実験結果を整理した。載荷速度は 1mm/min.,試験時温度は20℃で行った。

$$S = P/A \tag{16}$$

ここで, s: 引張せん断接着強度(N/mm²)

P:最大荷重(N)

A:供試体のせん断面積(mm²)

3. 2実験結果

供試体の破壊は,全て接着剤と鋼材表面の界 面破壊によって起こった。含浸接着剤の厚さと 引張せん断接着強度との関係を図-5に、鋼板 厚と引張せん断接着強度の関係を図-6に示す。

図-5 接着剤厚と引張せん断強度の関係

図-6 鋼板厚と引張せん断強度の関係

図-5より,前節の仮定に反して,接着剤の 厚さを厚くしても引張せん断接着強度は増加し ないことが分かる。接着剤厚が厚くなることに より,最大付着応力に至るまでの相対滑り量は 大きくなるが,引張せん断強度は増加しないこ とより,既往の研究⁹に見られる付着応力-相 対滑り関係の塑性域の存在が示唆される。

図-6より,被着体(鋼板)の剛性を上げる ことにより,引張せん断接着強度が増加するこ とが分かる。これは,前節のシートの引張剛性 を上げることで,応力集中が緩和されるという 結果に相当するものであり,また,既往の研究 ¹⁾におけるシートの引張剛性は,付着耐力に 正比例するという結論とも一致するものである。

次に,曲げ引張部をモデル化した両引き供試 体を用いて,シート定着部の引張剛性と剥離終 局荷重の関係を確認した。

4. 付着耐力向上実験

4.1実験概要

(1)供試体

本実験に用いた供試体の概略を、図ー7に示 す。供試体は、10cm×10cm の棒部材とし、 つかみ部として D19 の鉄筋 (SD295A) を埋 め込んだ。シートは、接着幅 4cm、片側(測定 側)接着長さ 30cm とし軸方向の向かい合う側 面に接着した。接着面は、ディスクサンダー処 理後、エポキシ樹脂プライマーを塗布し、エポ キシ樹脂含浸接着剤を用いてシートを接着した。 また、片側で破壊するように、測定側と補強側 に区別し、補強側には軸方向、軸直角方向の2 方向に繊維が配列されるようシートを増貼りし た。使用したシート、含浸接着剤の物性を、そ れぞれ表-1, 表-2に示す。コンクリートは, W/C=55.0%, 粗骨材最大寸法 20mm, スラン プ 8cm、空気量 2.5%で、圧縮強度 30MPa を 目標としたものを使用した。

図ー7 供試体概略図

夜 一 夜 一	- 灰茶	概粧ン	ノートの考	の195
弾性係数	引張強度	厚さ	目付量	破断伸度
(N/mm²)	(N/mm²)	(mm)	(g/m²)	(%)
2.30×10^{5}	3481	0 167	300	15

表-2	含浸接着剤の物性
-----	----------

曲げ強度	引張強度	引張せん断強度	混合粘度	
(N/mm²)	(N/mm²)	(N/mm²)	(mp∙s)	
85.8	59.7	15.7	4130	

(2)実験要因

シートの付着応力集中緩和により,剥離時付 着耐力を向上させることを目的として,以下の 3点に着目し実験要因を決定した。実験要因を,

表-3 実験要因及び実験結果

:	試験要因		コンク	リート	剥離発生	終局荷重	荷重幅
No.			強度(N/nm ²)		荷重(kN)	(kN)	(kN)
			圧縮	引張	A	В	B-A
1		1層	30.7	3.13	21.4	27.3	5.9
2) 全体2層		33. 0	3. 05	28.3	37.7	9.4
3	围	上10cm	30.7	2.61	21.6	29.9	8.3
4	浙2]	上15cm	30. 7	2.61	20.8	31. 3	10.5
6	着	上20cm	30.7	3.13	20.3	29.5	9. 2
6	定	下15cm	33. 0	3.05	18.3	27.2	8.9
\bigcirc	鋼	板定着	32.3	2.95	13.8	32.0	18.2
6	71	九-完善	29 2	9 05	16 1	26.2	10.2

図-8 実験要因図

表-3および図-8に示す。

・定着長分だけシートの引張剛性を上げる。

・定着長は既往の研究¹⁾より、10~15cm 前後とする。

・比較のため、機械的にシートを定着する。

供試体①は、シートを 1 層貼りつけたもの で、供試体②は、シートを全体に2層貼り付け たものである。供試体③~⑥は、付着応力集中 緩和により剥離進行を抑える目的でシート端部 において各定着長分だけシートを増厚(引張剛 性を増加)したもの、供試体⑦、⑧は、シート 端部において機械的にシートを定着したもので ある。供試体⑦は、シートを鋼板とコンクリー トアンカーで定着したもので、供試体⑧は、シ ートをコンクリートアンカーのみで定着したも のである。

(3) 載荷方法

載荷速度は、ノッチ部にひび割れが発生する までは 0.06mm/min.で、その後、破壊に至る まで 0.03mm/min.(変位制御)で載荷を行っ た。荷重はロードセルから読み取り、各荷重時 のひずみを、シート表面に貼り付けたワイヤス トレインゲージ(30mm)により測定した。

4.2実験結果および考察

(1)破壊性状

実験結果を,表-3にまとめる。荷重の増加 に伴い,中央ノッチ部にひび割れが発生する。 ノッチ部のひび割れ発生と同時に,ノッチより 3~5cm の位置に 45 度方向の斜めひび割れが 発生し,荷重は一時低下する。再び荷重は増加 し,シートの剥離が発生する。剥離後,荷重は わずかに増加しながら,シートの全面剥離で終 局を迎える(供試体①~⑥)。

定着部を,鋼板で補強した供試体⑦の終局は, 片面のシートが鋼板内で剥離し,終局を迎えた。

定着部を、コンクリートアンカーのみで補強 した供試体⑧は、アンカー径(Φ5mm)の幅 のシートをコンクリート面に残してシートが全 面剥離し終局を迎えた。

全ての供試体の剥離面は、プライマーと含浸 接着剤間の界面破壊と、コンクリート表層部の 凝集破壊が混在していた。

(2) 剥離発生荷重

ノッチ近傍のひび割れ部を除いた部分で,最 もノッチに近いひずみゲージと隣接するひずみ ゲージの値が等しくなったときの荷重を,剥離 発生荷重とした。

剥離発生荷重を,シート接着時の施工性を表 す指標としてみると,供試体⑦,⑧の値が他の 供試体の値と比べて著しく小さく,供試体⑦, ⑧が同一作成日であることよりシート接着時の 施工不備が伺える。

(3) 剥離発生荷重および終局荷重

シートの剥離進行を抑制する効果を評価する ため、剥離発生荷重と終局荷重の差(表-3の 荷重幅 B-A)をとり、定着補強していない供

図-9 剥離進行抑制効果

試体①の値に対する割合を,図-9に整理した。

図-9より、定着部を増貼り補強した供試体 の荷重幅はいずれも供試体①より大きく、供試 体④(上15cm 増貼り)の値が最も高く、付着 耐力向上効果が大きいことが分かる。また、供 試体⑥(下15cm 増貼り)についてもある程度 の効果が期待できることが分かる。

供試体⑦(鋼板定着),⑧については、定着 機構が異なること、剥離発生荷重が小さかった ことにより一概に比較できないが、供試体⑦の 終局荷重はシート引張強度の70%程度であり 十分な定着効果があるといえ、供試体⑧につい ては定着効果があまり期待できないといえる。

(4) シートのひずみ分布

供試体①,②,⑤について,各荷重時のひず み分布を,それぞれ**図**-10,11,12に 示す。いずれの供試体においても,荷重の増加 に伴いシートの剥離が進行し,全面剥離に至る 過程が伺える。各荷重においてひずみグラフの 傾きが負の領域は,付着に寄与している付着有 効域である。また,負の領域中央部の傾きが直 線の部分は付着応力-相対滑り関係の塑性域と 考えられる。**図**-10,11より,付着有効 域のひずみ分布の傾き($\Delta e/\Delta L$)を比較すると, 供試体②の傾きは供試体①の傾きの2分の1程 度であるが,引張剛性($E_q \cdot A_q$)が2倍であ るため,1層貼り,2層貼りともコンクリート とシートの最大付着応力($E_q \cdot A_q \cdot \Delta e/\Delta L$)は, ほぼ等しいといえる。

また,供試体②の付着有効域の長さは,供試

体①の長さの2倍程度である。同一付着力で付 着有効域が長いということは、剥離に対する付 着抵抗が大きくなることと考えられ、剥離終局 耐力が大きくなることが説明できる。これは、 2層貼りのシートの引張剛性が1層貼りの値よ り大きく、付着応力集中が緩和され、剥離進行 中の付着有効域が大きくなった結果であると考 えられる。

また, 図-12のひずみ分布より1層貼りの 区間は, 図-10(1層貼り)と同じひずみ分 布形状を, 2層貼りのひずみ分布は, 図-11 (2層貼り)と同じひずみ分布を示しているこ とが分かる。この事より,付着有効域が剥離の 進行に伴って増貼り定着区間に達すると,増貼 り部のシートの引張剛性の影響で付着応力緩和 効果が現れ,剥離終局荷重が増加することが説

5.まとめ

明される。

CFRP 接着工法において,シートの剥離終 局荷重を向上させる事を目的に,一連の研究(付 着応力分布基礎式の誘導,鉄片による基礎実験, コンクリート供試体による引張実験)を行った。 以下に,本研究で得られた結果をまとめる。

(1)完全弾性体モデルより誘導したシートの 付着応力集中係数から,接着剤の層厚 t_a とシー トの引張剛性($E_q \cdot A_q$)を大きくすることに より,付着応力集中緩和が期待できる。

(2)鉄片を使った引張せん断接着試験(JIS K
 6850)より,被着体の引張剛性(*E_q*·*A_q*)を
 大きくすれば,付着耐力が向上する。

(3) コンクリート供試体を使った引張試験よ り、シートの定着部を増貼りすることにより剥 離抑制効果が認められ、剥離終局荷重は増加す る。

(4)上記実験中,シートの定着部上面を 15cm 増貼りした供試体の剥離抑制効果が,最も大き かった。

(5)シートを鋼板により機械的に定着するこ とにより,剥離抑制効果が期待できる。

図-11 ひずみ分布 (供試体②)

参考文献

 1)岳尾弘洋ほか: CFRP 接着工法における炭素 繊維シートの付着特性, コンクリート工学年次 論文報告集, Vol.19, No.2, pp.1599-1604, 1997.6

2)佐藤裕一ほか: CFRP シートとコンクリートの付着挙動(その1),日本建築学会構造系論文集,No.500,pp.75-82,1997.10
 3)福田博・邉吾一著:複合材料の力学序説,古今書院,1993