論文 円形 RC 橋脚の耐震補強に関する実験的な研究

李泳昊^{*1}·松井繁之^{*2}·小林朗^{*3}·真鍋隆^{*4}

要旨:本研究は既存の耐震性の劣る既存の円形 RC 橋脚について,その曲げ耐力及びじん性率 をバランスよく向上させる補強方法を検討するものである。曲げ耐力の向上に RC による根巻 き補強を行う方法を提案し,じん性率の向上には根巻きコンクリートの中にらせん鉄筋を定着 するか,外側に炭素繊維シートで貼って行う方法について検討した。これらの補強方法の効果 を明らかにするため,多数の供試体で水平交番載荷実験を行った。その結果,根巻き部の材料 とせん断補強材によって,多少の差はあるが,期待とおり曲げ耐力,および,じん性率が向上 した。

キーワード:耐震補強,炭素繊維シート,根巻きコンクリート, PP モルタル

1. はじめに

鉄筋コンクリート橋脚の耐震補強に際しては, 鋼板巻立工法,コンクリート巻立工法,炭素繊維 シート巻立工法などが採用されてきた¹⁾。本研究 は,この中のコンクリート巻立工法について検討 したものである。既設橋脚を鉄筋コンクリートで 増厚する工法は,経済性,施工性等に長所がある が,巻立厚さが大きくなる場合,全長にわたって 巻立てる場合には,橋脚荷重の増加による基礎工 へ影響や建設限界の制約に留意する必要がある²⁾。 そこで,本研究は,コンクリート巻きの範囲を基 部に限定することで,重量増加,地上部の断面増 加を抑えることができるため,基部コンクリート 巻立工法の効果を実験的に研究することとした。

また,コンクリートにポリマーコンクリート (PP モルタルと呼ぶ)を用いる効果,ならびに, 最近注目されている炭素繊維シート^{3),4)}(以下, CFS という)を併用する耐震補強方法も検討した。

2. 実験概要

2.1 供試体

本実験では,既存橋脚をフーチング付き独立円 形橋脚をモデル化した供試体を用いた。供試体の 寸法を図ー1に示す。表-1には材料実験の結果 を示す。

実験では、根巻き部の材料(普通コンクリート と PP モルタル)、根巻き部のせん断補強材(ら せん鉄筋と CFS)、根巻き部の主鉄筋の有無、CFS とコンクリートとの接着の有無によって供試体 を分類して9 本の供試体を用意した。根巻き高さ は 50cm で、直径は、コンクリートを用いる場合 は 45cm(5cm 厚)、PP モルタルの場合は 42cm (3.5cm 厚)で施工した。補強したすべての供試 体の根巻き上部(実際橋脚の地上部)のせん断補 強は、断面増厚が殆どない CFS を用いて補強した。 また、フーチング部分は実験対象外であるので、 柱部の破壊以前に大きな損傷が生じないように 十分な量の鉄筋で補強した。各供試体の補強方法 を表-2に示す。

2.2載荷装置及び載荷方法

実験を行ったすべての供試体に上部工反力を

- *1 大阪大学大学院 工学研究科土木工学専攻 工修 (正会員)
- *2 大阪大学教授 工学部土木工学科 工博 (正会員)
- *3 東燃(株) トウシート事業室課長 工修 (正会員)
- *4 (株)ケミカル工事 エンジニアリング部課長

- 557 -

想定した軸力を導入した。軸力の導入は実験を簡 素化するため、供試体中にあらかじめ長方形断面 の鋼管シース を配置しておき、シース内にPC 鋼棒(φ17)を通し、そのPC鋼棒を緊張するこ とにより供試体に所定の軸力(全ての供試体で常 時10kgf/cm²となるよう特殊モーターによるナッ ト回転によって軸力調節した)を導入した。柱部 上面では球座を用い、下面ではピンを用いること で、実験中の柱の変形を拘束しないようにした。 図-2に載荷装置の概要図を示す。実験では載荷 点位置に治具を取り付け、押し引き両用の油圧ジ ャッキ(ストローク±250mm)を用いて静的交番 載荷を行った。

載荷方法は降伏荷重時の変位1δ_yから最終載 荷までの変位を1δ_yずつ増加させながら,各変 位増分で1回の交番載荷を行う方法を採った。

2.3降伏荷重・終局変位の定義

本実験に用いた供試体断面のように,軸方向鉄 筋が全周配筋された部材においては,最外縁鉄筋 降伏後も載荷をすると,耐力はかなり増加する傾 向を示し,最外縁鉄筋の降伏荷重が必ずしも部材

表-1 材料テスト結果

区分	ヤング係数 (kgf/cm ²)	最大応力(kgf/cm²) (降伏応力)				
コンクリート(本体)	2.80E+05	330				
コンクリート(根巻き)	2.71E+05	300				
鉄筋 (D13)	2.01E+6	(3200)				
鉄筋 (D10)	1.83E+6	(3700)				
鉄筋 (D6)	1.72E+6	(3900)				
CFS	3.80E+6	30000				
PPモルタル	1.1~2E+5	庄縮強度:240以上 曲げ強度:61.1以上 引張強度:20.0以上				

*PP モルタルは JIS の試験結果である

表―2 供試体の一覧							
供試体	根巻き部	根巻き部	フーチングへの				
	材料	せん断補強材料	主鉄筋の定着				
H001	根巻きなし(無補強)						
CRN	コンクリート	らせん鉄筋(0.45%)	なし				
MRN	PPモルタル	らせん鉄筋(0.45%)	なし				
CCN	コンクリート	CFS(0.29%)	なし				
CRA	コンクリート	らせん鉄筋(0.45%)	8-D10(0.91%)				
MRA	PPモルタル	らせん鉄筋(0.45%)	8-D10(0.91%)				
CCA	コンクリート	CFS(0.29%)	8-D10(0.91%)				
HOCF	高さ50cmまでCFS巻き立て(接着あり)						
HOCFN	高さ50cmまでCFS巻き立て(接着なし)						

*()の中の数字は鉄筋及び CFS の補強比である の降伏耐荷力とならない。そこで本実験では,部 材の降伏耐力として「軸方向鉄筋に作用している 引張力の合力位置での応力が降伏応力に達する ときの荷重」と定義した⁽⁵⁾。ただし,合力位置に 鉄筋がない場合があるので,中立軸と合力位置の 関係から最外縁鉄筋におけるひずみを注目し,平 面保持の仮定で中立軸位置が降伏ひずみに達す る降伏荷重を決定した。

また,本実験においては,載荷途中で CFS の破 断や,軸方向鉄筋の座屈により耐力低下が大きく なって,載荷荷重が初期降伏荷重以下に低下する 時の変位を終局変位と定義し,載荷を止めた。

2.4 各供試体の理論断面力

帯鉄筋およびらせん鉄筋による横拘束効果を 見込んだコンクリートの応力一ひずみ関係式のを 用いて各供試体の断面力を求めた。CFSを用いた 場合は、CFSを鉄筋に断面換算して計算した。

$$\sigma_{cc} = \sigma_{ck} + 3.8\alpha\sigma_{sy}(\rho_s + n\rho_{cf}) \tag{1}$$

 σ_{cc} : 横拘束筋で拘束されたコンクリートの 強度(kgf/cm²)

 σ_{k} : コンクリートの設計基準強度 (kgf/cm²)

α:断面補正係数で,矩形断面では0.2

σ_g: 横拘束筋の降伏点(kgf/cm²)

*ρ*_s: 横拘束筋の体積比

n: CFS と鉄筋のヤング係数の比

ρ_{cf}: CFS の体積比

降伏荷重は実験と同じ定義で計算し,終局荷重は 圧縮側鉄筋がコンクリートの圧潰ひずみに達し たときのとして計算した。

また, せん断耐力も, 道路橋示方書で採用されて いる式に, CFS の効果を考慮して算出した ⁿ。

各断面の理論断面力を表一3に示す。この表で, いずれの供試体も曲げ破壊するように設計,補強 されていることがわかる。また,根巻き部に主鉄 筋を設けない供試体は基部に塑性ヒンジが生じ, 根巻き部に主鉄筋がある供試体は根巻き上部に 塑性ヒンジが生じるように設計した。

3. 実験結果

本実験における供試体の主たる破壊過程は,水 平ひびわれ→主鉄筋降伏→斜めひびわれ→かぶ りコンクリートの剥離→コンクリート圧壊→主 鉄筋の座屈か引張破壊の順で,すべて曲げ破壊し

区分	降伏曲げ耐力	終局曲げ耐力	せん断耐力	
H001	4.36	5.40	5.97	
HOCF(HOCFN)	4.36	5.81	29.5	
根巻き上部(本体)	6.49	8.66	29.5	
CRN (基部)	5.58	7.41	11.08	
CRA(基部)	7,49	9.58	11.08	
MRN (基部)	5.18	6.69	10.37	
MRA (基部)	6.96	8.67	10.37	
CCN(基部)	5.64	8.39	30.5	
CCA(基部)	7.55	10.58	30.5	

表-3 各供試体の理論断面力 6,7

*根巻き上部の本体(基部から 50cm 高)の値は,根巻きがある 全供試体で同じ値である。

*根巻き部の断面力は,根巻き部と本体との付着を完全付着 として考える。

た。また,表-3の計算のとおり,根巻きを設け ない供試体と根巻きを設けても基部の断面耐力 が小さい供試体は基部で破壊し,主鉄筋を入れて 曲げ強度を大きくした供試体 CRA, MRA, CCA は根巻き上部で破壊した。実験の結果は表-4, 図-3,4,5に示す。

根巻きコンクリートの影響

根巻きコンクリートの効果を基本的に確認す るため, CRN と CRA の実験を行った。その結果, CRN は根巻きの基部から, CRA は根巻きの上段 から圧潰し始め, 各々7 δ, 12 δから耐荷力の低 下が見られたが,急激な低下は両方とも破壊寸前 まで見られなかった。

最大荷重と終局変位を無補強供試体と比較す ると, CRN の場合は, 最大荷重は 1.2 倍程度, 終 局変位は 1.7 倍程度向上し, CRA の場合は,各々 1.5 倍, 1.7 倍程度向上した。CRN, CRA ともじん 性率が 1.7 倍も向上したことは, 根巻き部に設け たらせん鉄筋による拘束効果であると思われる。 このように, 根巻きコンクリートによる耐力の向 上およびらせん鉄筋によるじん性率の向上が確 認された。

PP モルタルの影響

根巻き部の材料として、コンクリートの代わり に接着力の大きいPPモルタルを用いて実験した。

- 559 -

供試体	破壊モード	じん性率 (/H001)	終局変位 (/H001)	降伏荷重 (/H001)	最大荷重 (/H001)	備考
H001	柱部陣山方向 鉄筋座屈	7.8 (1)	93.5mm (1)	4.49tf (1)	5.75tf (1)	・基部での破壊
CRN	根巻きコンクリートの圧壊(下部から) 基部での主鉄筋座屈	15.1 (1.94)	161.2 (1.72)	5.26tf (1.17)	6.80tf (1.18)	・7る以後耐荷力低下
CRA	根巻きコンクリートの圧壊(上部から) 45㎝高さでの主鉄筋座屈	15.8 (2.03)	159.5 (1.71)	6.08tf (1.35)	8.34tf (1.45)	・12 δ以後耐荷力低下
MRN	根巻きPPtbMの圧壊(下部から) 基部での主鉄筋座屈	15.3 (1.96)	164.2 (1.76)	4.91tf (1.09)	6.71tf (1.17)	 ・3δで初めのクラック発生 ・7 δ以後耐荷力低下
MRA	根巻きPPtl/りlの圧壊(35cm高) 35cm高さでの主鉄筋座屈	17.4 (2.23)	176.2 (1.88)	5.46tf (1.22)	7.68tf (1.34)	 ・3δで初めのクラック発生 ・8 δ以後耐荷力低下
CCN	基部での主鉄筋座屈	16.0 (2.05)	171.1 (1.83)	5.30tf (1.18)	7.21tf (1.25)	・根巻きの剥削は確認されない ・14 δまでほぼ耐荷力低下なし
CCA	基部での主鉄筋引張破断	20.3 (2.6)	205.5 (2.20)	6.04tf (1.35)	8.57tf (1.49)	・15 δ 載荷中根巻き部鉄筋座屈 ・CFS破断なし
HOCF	7-7 方向CFS破断 基部での主鉄筋座屈	12.7 (1.63)	152.7 (1.63)	4.61tf (1.03)	6.30tf (1.10)	・1δ, CFSにクラック ・10δ載荷中、CFS破断
HOCFN	基部での主鉄筋引張破断	16.0 (2.05)	192.0 (2.05)	4.55tf (1.01)	6.08tf (1.06)	・CFSにクラック発生なし ・CFS破断なし

表-4 繰り返し載荷実験結果の一覧

表-5 終局曲げ耐力の実験値/計算値

H001	HOCF	HOCFN	CRN	CRA	MRN	MRA	CCN	CCA
1.06	1.08	1.05	0.92	0.96	1.00	0.89	0.86	0.99

図-3 繰り返し載荷実験結果(包絡線)

この材料は、ポリアクリル酸エステル共重合体 系ポリマーセメントモルタルであり、コンクリー トに比べて圧縮強度は低いが、コンクリートや鉄 筋との付着力が大きくまた中性化速度が小さい ので,鉄筋の被り量を小さくすることができる。 施工面においては PP モルタルは塗布や吹き付け による施工が可能であるので、複雑な型枠を必要 としない特長がある。今回はかぶりを小さくして 実験を行った。その結果, PP モルタルの増厚比 が70%に薄くなったため,最大荷重は,コンクリ ートを用いた場合より若干小さくなったが,終局 変位はコンクリートを用いた場合より逆に伸び ている。また、初期水平ひびわれが3δで発生し、 引張破壊ひずみの大きいことが証明された。図-4を見ると、根巻き上部において本体と根巻き部 の水平開きは、PP モルタルの場合、コンクリー トを使う場合より,小さいことが分かる。これも, PP モルタルとコンクリートとの付着が強いこと を示すものである。このように、鉄筋との付着力 が強いと、材料の剥離が生じにくくし、また、らせ ん鉄筋や主鉄筋の位置を長く保持できることか ら,鉄筋の局部変形を抑制したものと考えられる。 コンクリートを使った供試体 CCA は,8 δ載荷中, 根巻きの上部からコンクリートの剥離が生じ, ら せん鉄筋の効果を失っていたが, PP モルタルを 使った MRA の場合は, 13 δ 以後に剥離が生じた。 これらの結果で、増厚断面積を小さくしたい場合 やひびわれを抑えたい時等にはコンクリートの 代わりにPPモルタルの使用が可能と考えられる。

CFS による影響

根巻き部のせん断材補強材料として,らせん鉄筋 の代わりに CFS を用いて実験した。この結果, CCN と CCA とも14 δまでほぼ一定な耐荷力を持 ち,CRN 及び CRA と比較して,最大荷重はほぼ 同じ(3~6%)であったが,終局変位は 6~25%程 度上回った。これは,CFS を用いる場合は被りコ ンクリートがないためコンクリートの有効断面 積が大きくなったことと,シートであるため,コ ンクリートの剥離等を全表面で拘束する効果が 現われたためと考えられる。

図一5 CFS の横ひずみ(根巻きない供試体)

CFS とコンクリートとの接着の有無

による影響

根巻き部を設けなくて CFS のみで巻き立てて 補強した供試体 H0CF, H0CFN は,最大荷重,終 局変位で,無補強のものより,各々,6~10%, 1.6~2.0 倍に向上した。終局変位の向上は,CFS による横拘束効果であり,最大荷重の向上は,そ の横拘束効果でコンクリートの見かけの強度が 高くなった⁶ためであると思われる。

実験の経過は、CFS とコンクリートとを全面接着 した H0CF は、1 δから樹脂の割れと思われる CFS

--- 561 ---

にすき間を生じ, 10 δの載荷途中に CFS の破断 が発生した。一方, 接着を設けない HOCFN は, 最後まで, CFS に水平ひびわれと破断は発生しな かった。付着を切ったため,局部ひずみが発生せ ず破断しなかったと思われる。最終的に主鉄筋が 引張破断した。HOCF と HOCFN の CFS の横方向 ひずみを比べてみると,接着をすることによって, CFS に応力集中が生じているが,接着をさせない 場合では全周でほぼ同じひずみが発生し,完全な フープテンション状態になっていた。そしてひず みの絶対値は減少した。以上から,付着を切るこ とにより CFS の効果が高くなることが分かった。

計算結果との比較

耐荷力に関して表-3の計算断面力と実験値 との比を表-5に示す。根巻きがない供試体では、 実験値の方が計算値より高い値示しているが、根 巻きを設けた場合は、計算値より実験値の方が下 回っている。これは、根巻きがある供試体の断面 力を計算するとき、根巻き部と本体とは完全付着 を仮定して計算したが、付着は完全でなく、すべ りがあり、根巻きコンクリートの有効範囲が計算 よりも小さくなっていると考えられる。

4. まとめ

本実験は、円形断面の RC 単柱橋脚の耐震補強 に関して、らせん鉄筋等で根巻きすることによる 効果、コンクリートに代って PP モルタルを用い た場合の特性、さらに、CFS 巻き立てによる効果 について検討したものである。本実験にて得られ た結果は以下のようにまとめられる。

- (1) じん性率の向上を主たる目的として、根巻き 部の主鉄筋を定着しなかった場合、らせん鉄 筋及び CFS の拘束効果で、無補強供試体より 終局変位が1.7 倍以上向上した。
- (2) じん性率及び曲げ耐力を同時に向上させるために、根巻部の主鉄筋を定着した場合は、曲げ耐力が約50%向上し、終局変位も約2倍まで上がった。ここでは、まだ、寸法効果を考めた。

慮していないが,コンクリート巻立補強を橋 脚基部にとどめても耐荷力の増加とじん性率 の向上が期待できると思われる。

- (3) 根巻きに PP モルタルを採用すると,最大荷重 はコンクリートの場合より大きくはならない が,終局変位の増大は期待できる。また,ひ びわれの発生変位は大きくなることが認めら れた。
- (4) CFS とコンクリートと付着すると局部ひずみ でシートが破断するが、付着を切ると破断せ ず、じん性率向上はより大きくなった。
- (5) 道路橋示方書の式を用いて計算した耐荷力と 実験値と比較すると、根巻きしない場合には 計算値の方が小さくなる傾向があるが、根巻 きした供試体では計算値の方が大きくなった。 これは、根巻部と本体との間を完全付着とし て計算したためと思われる。

参考文献

- Priestley, M. J. N. et al. : Seismic Design and Retrofit of Bridges, John Wiley & Sons, 1996
- 2) 松井繁之ら:既存 RC柱の炭素繊維シートによる 補強効果に関する実験的研究,第51回年次学術 講演会講演概要集,1996.9
- 3) 財団法人 土木研究センター:炭素繊維シート を用いた耐震補強法研究会報告書, 1996.9
- 4)長田光司ら:炭素繊維シートによる鉄筋コンク
 リート橋脚の耐震補強,コンクリート工学年次
 論文報告集 Vol.18,No.2, 1996
- 5) 阪神大震災調査研究特別委員会: 阪神淡路大震 災被害分析と靱性率評価式, 土木学会, 1996. 9
- 6) 日本道路協会:道路橋示方書 耐震設計編, 1996.12
- (財)鉄道総合技術研究所:炭素繊維シートによる地下鉄 RC柱の耐震補強一設計・施工指針-, 山海堂, 1997
- 8) 川島一彦ら:道路橋の耐震設計計算例,山海堂, 1994