論文 耐震壁 - フラットスラブ接合部の耐力評価に関する 実験的研究

宮岡 ちさと*1・西岡 聖雅*2・丸田 誠*3・田才 晃*4

要旨:超高層RC造建物におけるH型センターコア耐震壁-フラットスラブ接合部を想定 して一文字型耐震壁-フラットスラブ接合部試験体に強軸・弱軸及び斜め(45度)方向 からの静的加力実験を行った。耐震壁-フラットスラブ接合部の力学的挙動を把握すると 共に建築学会RC規準の柱頭周りのせん断耐力式の適用性を検討した。その結果、同規準 のせん断耐力式の適用性は加力方向により異なることが明らかとなった。復元力特性は各 試験体共通して急激な耐力低下を示すことなく安定した紡錘形の履歴特性を示した。 キーワード:耐震壁,フラットスラブ,パンチング破壊,曲げ破壊,斜め45度

1. はじめに

* 1

超高層鉄筋コンクリート (RC) 造建物にお いて図-1に示すようなH型コア耐震壁と大型 フラットスラブ (フラットプレート) による構 造形式を用いると,比較的自由な平面計画が実 現可能となる。このような構造形式では、地震 時にコア耐震壁とフラットスラブの接合部周辺 の応力状態が厳しくなり、設計時にはスラブの パンチング(せん断)破壊についての検討が必 要となる。柱ーフラットスラブ接合部に関して は狩野・吉崎らの多くの研究例 1) があり,せん 断耐力式が建築学会 RC 規準²⁾に示されてい る。一方、壁ーフラットスラブ接合部に関する 既往の研究としては New RC 総プロの一環と して行われた実験研究^{3)~5)}があるが、この実験 結果は.RC 規準のフラットスラブ構造における 柱頭周りのせん断耐力評価式(以下 RC 規準パ ンチング耐力評価式)を壁柱に拡張できる可能 性を示すにとどまっており,高強度材料を対象 としていること及び試験体数が限られているこ とから、一般的な設計資料とするにはデータが 不足しているのが現状である。そこで本研究は、 壁ースラブ接合部の地震時を想定した静的逆対

大阪工業大学大学院生

称加力実験を行い,入力方向やエレベーターシ ャフト等のスラブ開口の有無によって破壊形式 と耐力・変形性状がどのように変化するかをと らえ,既往のフラットスラブ構造におけるパン チング耐力式の適用性を検討することを目的と した。

* 2	鹿島建設株式会社技術研究所	第三研究部研究員	(正会員)
* 3	鹿島建設株式会社技術研究所	第三研究部主任研究	員 (正会員)
*4	大阪工業大学工学部建築学科	助教授博(工)	(正会員)

(正会員)

- 445 -

2. 実験振要

2.1 試験体

試験体は、図-1 に示すような想定平面プラン において耐震壁に取り付くフラットスラブを 抽出した幅 400 cm・スパン 400 cm,スラブ厚さ 12 cmの中央に幅 200 cm・厚さ 30 cmの一文字 型壁を設けた形状となっており、縮尺は約 1/3 である。形状及び配筋を図-2に示す。パンチ ング破壊型試験体 5 体と実建物のスラブ筋比 に近いスラブ曲げ降伏型試験体 1 体の計 6 体 の試験体を製作した。使用材料の力学的性質 を表-1 に示す。スラブ主筋は、パンチング破 壊型試験体を D13 (SD345),曲げ降伏型試験 体を D10 (SD295A) とし、コンクリートは目 標強度 σ_B =30MPa とした。試験体のパラメー タは①加力方向と②スラブ開口の有無である。 試験体全諸元と耐力算定値を表-2 に示す。表 -2 中のパンチング強度 Mo は RC 規準パンチ ング耐力評価式によって算定したものである。 パンチング強度 Moは、パンチング算定断面の

曲げ降伏モーメント Mf,せん断力により伝達さ れるモーメント Ms および算定断面直交面のね じりにより伝達されるモーメント Mt の和であ る。また,My はスラブ全断面が降伏したとき の耐力で,入力の上限値を表す。Mo,My とも, 算定には表-1に示した材料の実強度を用いた。 -RC 規準のせん断耐力評価式-

• Mo=Mf+Ms+Mt

- Mf= $0.9a_{0t}\sigma_{v}d(c_{2}+d)/xt+0.9a_{0t}\sigma_{v}d(c_{2}+d)/xb$
- Ms= τ u(c₂+d)d(c₁+d) τ u=1.06 $\sqrt{\sigma}_{\rm B}$
- Mt=2 τ tud²/2 {(c₁+d)-d/3} τ tu=6 τ u
 c₁, c₂:柱の断面寸法, xt,xb:スラブ筋間隔
 *その他記号は,RC 規準に準ずる。

$\overline{}$	呼び名	材質	降伏点 σy (MPa)	引張強さ σt (MPa)	ヤング係数 Es (×10 ⁵ MPa)								
スラフ防	D10	SD295A	350	492	1.96								
スラフ防	D13	SD345	361	537	2.02								
	コンクリート												
	記題体加力課												
試験体名	名材令		王相強	3	彈性係數								
		- -	(MPa)		× 10 ⁴ MPa)								
No.1	56	3	28.7		2.23								
No.2	63	8	31.4		2.66								
No.3	57		32.3		2.74								
No.4	71	8	33.2		2.71								
No.5	67	3	34.5		2.74								
No 8	45		304		2.53								

表-1 使用材料の力学的性質

- 446 -

		試験体全	推元		解剖力算定								
試験体	スラブ配筋	加力方向	スラブ	スラブ	初期開性*1	ひび割れ荷量*2	Mf	Ms	Mt	バンチング強度	曲げ強度	想定破壞	
	上下端共			使用鉄筋	(kNm/mm)	(kN • m)	(kN • m)	(kN · m)	(kN·m)	Mo(kN+m)	My (kN · m)	形式	
No.1	D130100	建制	なし	SD345	77.6	33.0	34.3	149.1	219.7	403.1	695.9	バンチング	
No.2	D13 @50		なし	SD345	12.6	37.8	357.9	156.5	41.2	555.6	715.8	バンチング	
No.3	D130100	建制	あり	SD345	46,1	18,5	29.4	132.4	116.7	278.5	347.9	パンチング	
No.4	D13 @50	調料	あり	SD345	6.9	28.6*3	178.5	75.5	42.1	296.1	534.5	バンチング	
No.5	D13@100	目め(45座)	なし	SD345	39.9	36.1	-	-	1	390.1 **	695.9	バンチング	
No.6	D10@120	建制	なし	SD295A	77.7	31.9	15.7	151.0	228.6	395.3	321.4	曲げ	
*1:K=3Ele/1.3 (ただし」e:等価断層2次モーメント L:加力兼から豊外層までの長さ)													
#2:Ma=a gt+7e(ただしのgt=1.A/gB Ze:等価衡面係数) #3:Na.4のZeは間口側と無間口側のZeの平均値とした。											均値とした。		

表-2 試験体の全諸元と耐力算定値

*2:Mo=o σt Zo(ただし,o σt=1.8/ σB Zo:等価新面係数) *4:MoNo.5=√Mo(No.1達軸)*+Mo(No.2異軸)*/√2 (ただし,MoNo.2はD13@100とした場合)

加力》

2.2 加力方法

加力装置の概要を図-3 に示す。地震時の変 形状態を想定し,一方のスラブ片を鉛直下向き に加力すると同時に他方のスラブ片を鉛直上向 きに加力した。加力の制御は2 台ずつの油圧 ジャッキによりそれぞれの加力片が水平を保ち ながら鉛直変位の絶対値が等しくなるように, 変位制御で正負繰返し漸増載荷を行った。加力 サイクルは加力芯の鉛直変位δの和を加力芯間 の距離Lで除して定義した部材角Rより,No.1 ~No.5 のパンチング破壊型試験体においては $R=\pm 1/800rad, \pm 1/400rad, \pm 1/200 rad, \pm$ 1/100 rad,±1/50 rad,±1/25 rad の各変位振幅 を一回づつ繰返し、最終サイクルはR=+1/15 rad とした。また,曲げ破壊型を想定した試験 体 No.6 では、変位振幅で2回づつ繰返し載荷を

行った。なお,長期荷重の効果は実験変数に含 めないので、スラブ自重の影響を除くために図 -3 中に示すようにカウンターウエイトによっ てスラブ自重をキャンセルした。

腔

— 447 —

3. 実験結果

各試験体の最終ひび割れ状況(スラブ面 1/4 または 1/2 の領域)と曲げモーメントー変位関 係をそれぞれ図-4,5 に,実験結果一覧を表-3 に示す。初期剛性において,弱軸方向加力試験 体(No.2,4)は算定値(表-1)と比較的一致し たが,強軸方向加力試験体(No.1,3)は算定値 (表-1)の約 1/2 の値となった。スラブの初 期ひび割れ荷重は耐力算定値とよく一致した。

3.1 ひび割れの進展と破壊状況

以下の説明において,フラットスラブ中央の 壁で幅 200 cm側(長手方向)を壁側面,厚さ 30 cm側(木口方向)を壁裏面と称す。

試験体 No.1,3 は初期サイクルより壁妻面近 傍に壁妻面と平行方向のひび割れが発生し,そ の後壁隅角部から放射状にひび割れが進展した。 最大耐力時に放射状のひび割れはスラブ端部ま で達し,加力の進行に従い壁側面の壁-スラブ 接合部境界に沿ったひび割れが壁側面の中央付 近まで達した。最終サイクルに壁裏面から扇状 にコンクリートが剥離した。試験体 No.2.4 は ひび割れが壁隅角部より放射状に発生し、その 後壁側面に平行なひび割れが進展した。No.4 は壁側面側のコンクリート剥離は確認されなか ったが,開口側壁隅角部近傍でパンチング破壊 の一要因とされるねじりによるひび割れ、剥離 が集中した。試験体 No.5 は初期サイクルより 壁隅角部近傍から放射状のひび割れと壁側面に 平行なひび割れがほぼ同時に発生し,最大耐力 に達する前にひび割れがほぼスラブ全面に広が った。最大耐力以降壁妻面近傍に網目状のひび 割れが集中し、コンクリートが剥離した。試験 体 No.6 のひび割れ進展状況は試験体 No.1 に 類似しているが,剥離状況は試験体 No.1 と異な り,壁側面,壁妻面の広範囲に及んだ。

表-3 実験結果一覧

初期順性*1	スラブヨ	筋降伏	初期ひび割れ発生		最大耐力				最大変形時 (R=1/15)		破壊形式	
			(曲げ)		正加力		<u> 魚加力</u>					
	荷堂	麦位	荷重*2	麦位	荷重	賣位	荷重	麦位	荷重	賣位		
kN•m/mm	kN•m	mm	kN•m	mm	kN • m	mm_	kN•m	mm	kN•m	mm		
32.8	411.2	33.8	-30.1	-4.4	461.8	57.9	-435.6	-38.1	346.3	260.5	接合部スラブのパンチング破壊	
9.0	490.9	134.5	45.0	25.7	496.2	152.0	-437.9	-96.0	-	-	パンチング破壊みられず	
19.9	222.0	28.9	-21.1	-4,8	291.0	76.0	-284.0	-76,0	233.4	260.0	接合部スラブのバンチング破壊	
5.8	-200.6	-115.3	41.3	12.0	218.5	144.2	-216.6	-76.0	206.5	260.0	接合部奏画スラブのねじり破壊	
23.6	301.6	48.0	-33.5	-4.8	370.1	134.5	-388.9	-67.3	322.4	260.0	接合部スラブのバンチング破壊	
23.7	267.1	38.5	-37.1	-7.1	313.9	112.2	-310.0	-76.0	249.2	264.5	スラブ全体の曲げ破壊	
	kN • m/mm 32.8 9.0 19.9 5.8 23.6 23.7	初期間性 ¹¹ スラブ3 満里 <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN・m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kN-m/mm</u> <u>kD-m/mm</u> <u>222.0</u> <u>5.8</u> <u>-200.6</u> <u>23.6</u> <u>301.6</u> <u>23.7</u> <u>267.1</u>	初期剛性 ^{**1} スラブ主防時伏 特置 家ひ 株N*m/mm 32.8 9.0 490.9 134.5 19.9 222.0 23.8 -200.6 -115.3 23.6 301.6 48.0 23.7 26.1 138.5	初期剛性 ^{*1} オ国 水・m/mm 米・m/mm 米・m/mm 泉の 490.9 134.5 45.0 19.9 222.0 134.5 45.0 19.9 222.0 28.9 -21.1 5.8 -20.6 -115.3 41.3 23.6 30.16 48.0 -33.5 -37.1 -35 -37.1 -37 -37 -37 -37 -37 -37 -37 -37	初期開性 ^{*1} 大ラブ主防時伏 初期ひび割れ発生 (曲げ) ************************************	初期開性**** スラブ主防時伏 初期ひび割れ発生 (曲/)	初期開性************************************	初期開性************************************	初期開性 ^{**} スラブ主防時伏 初期ひび割れ発生 (曲げ) ř江加力 大加力 正加力 正加力 正加力 正加力 正加力 正加力 正加力 正	初期開性************************************	初期開性 ^{**} スラブ主訪時伏 初期、 ************************************	

*1 初期開陸は、初期ひび割れ党生の国際ペテッノと定義する。 *2 初期ひび割れ資重は、実験値を各試験体の加力操から整外面までの距離の比率に応じて置換したものである。

3.2 曲げモーメントー変位関係

図-5 に示すように、試験体 No.1,3 の最大耐 力は RC 規準のパンチング耐力式より求めた算 定値をR=1/50 rad のサイクルで上回った。 試験体 No.3 の最大耐力は、壁片面に付した開 ロにより試験体 No.1 の最大耐力 462kNm の 約 60%となる 291kNm であった。なお、この耐 力差 171kNm は RC 規準式のスラブ片側のね じり耐力 Mt の算定値(111.8kNm)よりかな り大きくなった。試験体 No.2 は実験を途中で 終了したため、最大変形時の計測は出来なかっ たが,同じ弱軸方向加力の試験体 No.4 の復元力 特性と比較すると同傾向の履歴曲線を描いてい るためR=1/25 rad を本試験体の最大耐力と する。試験体 No.4 の最大耐力は,壁片面に付し た開口により試験体 No.2 の最大耐力 496kNm の約 40%となる 218kNm であった。試験体 No.5 はR=1/25 rad のサイクルで発揮された 最大耐力を発揮し,最大耐力(370kNm)は算 定値とほぼ一致した。試験体 No.6 の最大耐力 (314kNm) は,曲げ耐力の算定値 My とほぼ 一致した。いずれの試験体も最大耐力以降の急 激な耐力低下はみられず,安定した紡錘形の履 歴性状を示した。

図-6 壁周囲スラブ上面変位分布

3.3 スラブの歪、変形分布

強軸方向へ加力を行った試験体 No.1 と弱軸 方向へ加力を行った試験体 No.4 の R=1/200 rad 以降の各ピークにおける壁周囲スラブ上面 の鉛直変位を図-6 に,壁周囲スラブ筋の歪分 布を図-7に示す。

試験体 No.1 の壁周囲スラブ鉛直変位は最大 耐力以降壁妻面側から急激に進んだ。これは壁 妻面近傍のスラブのひび割れ幅が急激に広がっ た観察結果と対応している。壁周囲スラブ筋の 歪分布(図-7)から,試験体 No.1 では壁妻面 近傍スラブ筋が最大耐力時を境に降伏し始め, 鉄筋が降伏した箇所は壁妻面側に集中していた。

したがって,強軸方向加力では壁妻面の近傍 でパンチング破壊が生じたとみられる。また,

開口をもつ試験体 No.4 では、鉄筋の降伏箇所 が最大耐力時より壁側面側に集中しているが, 壁近傍スラブ鉛直変位にはほとんど変化がなく, 壁裏面側の鉄筋に降伏箇所は認められかった。 開口側隅角部からのひび割れ進展に伴うスラブ 鉛直変位が著しいことから,壁裏面側近傍でね じり破壊が生じたものと判断できる。試験体 No.2 は試験体 No.4 の壁側面側と同様の観測 結果がみられ,R=+1/25 rad まで破壊には至ら なかった。

3.4 加力方向の違いによる耐力比較

加力方向の違いによる試験体耐力の比較を図 -8に示す。図中に示した曲線はRC規準のパ ンチング耐力式によって算定した強軸方向加力 時耐力と弱軸方向加力時耐力をそれぞれ長軸・ 短軸とした楕円である。ただし,弱軸方向の算 定ではスラブ筋を試験体 No.1,5 と同様 D13-@100 として算定した。試験体 No.5 の耐力は RC 規準のパンチング耐力式の楕円近似値とほ ぼ一致した。

図-8 加力方向の違いによる耐力の比較

4. まとめ

耐震壁-スラブ接合部を対象に加力方向,スラ ブ開口の有無,破壊形式を主変数として静的加 力実験を行い,力学的挙動および RC 規準の柱 -フラットスラブ柱頭まわりのパンチング耐力 式の適用性について検討を行った結果以下のよ うな結果が得られた。

 全ての試験体に共通して,最大耐力はいず れも大変形(R=1/50rad もしくは R= 1/25rad) で発揮された。その後の耐力低下は,緩やかで 復元力特性は比較的紡錘形の安定した履歴性状 を示した。

2) 強軸方向に加力を行った試験体(No.1,3) は壁妻面付近でパンチング破壊し,スラブ開口 の有無に拘わらず,RC 規準のパンチング耐力式 をもとに行った耐力算定値と同等かそれ以上の 耐力を示した。

3) 弱軸方向に加力を行った試験体 No.2 で はR=+1/25 rad まで破壊が確認されず,材料 強度に基づいて RC 規準のパンチング耐力式に より推定した破壊形式と異なった。試験体 No.4 は接合部妻面開口側スラブでパンチング破壊の 一要因とされるねじり破壊となった。

4) 斜め(45 度)方向の加力では、ひび割れの進展や破壊性状は強軸方向加力の試験体と類似していた。最大耐力は、RC規準のパンチング耐力式による各方向の耐力算定値を基にした楕円近似の値と一致した。

謝辞:本実験研究を行うにあたって,鹿島建設 (株)の別所佐登志氏,鈴木紀雄氏,永井覚氏を はじめ大阪工業大学大学院生の上西彰氏(現大 日本土木(株)技術研究所),大阪工業大学卒研生 の由良暢章(現コーナン建設(株)),吉村憲宏(現 小田急建設(株)),両君ならびに田才研究室卒研 生の多大な御指導,御協力を戴きました。深く 感謝致します。

参考文献: [1] 狩野芳一,吉崎征二:「フラットプレート構 造の柱-スラブ接合部に関する研究 (その 1~4)」建築学 会論文報告集第 288,292,300,309 号,1980~1981, [2] 日本 建築学会:鉄筋コンクリート構造計算規準・同解説, 1996 [3] 西田哲也,他 3 名:「高強度コンクリートフラットプレート 構造の開発,側柱-スラブ接合部 (その 1~その 2)」日本 建築学会大会講演梗概集 (関東) pp887-890,1993.9, [4] 加 藤博人,他 2 名:「高強度コンクリートフラットプレート構 造の開発,隅柱-スラブ接合部 (その 1~その 2)」日本建 築学会大会講演梗概集 (関東) pp891-894,1993.9, [5] 小 澤潤治,他 4 名:「高強度コンクリートフラットプレート構 造の開発,璧柱シリーズ (その 1~その 2)」日本建築学会 大会講演梗概集 (関東) pp895-898,1993.9,