論文 鉄筋コンクリート造開口壁のせん断耐力実験

土田尚子*1 ·山本俊彦*2 ·山田和夫*3

要旨:2種類の連続した折れ曲がり鉄筋からなる補強金物を用いた鉄筋コンクリート造開口壁の曲げ せん断実験を行い、開口壁の耐力、変形性能に及ぼす影響について調べた。実験の結果、鉄筋コンク リート造開口壁の開口部補強筋は降伏歪みに達し、試験体は十分なせん断耐力と変形性能を発揮した。 終局せん断耐力は、開口部を補強していない試験体に対して開口部に補強金物を用いた試験体の方が 25%ほど高い値を示したが、補強金物の種類による違いは大きくなかった。無開口壁計算値の終局強 度計算値(荒川式×開口低減率)に対する比は、開口部無補強の No.1 試験体で 1.20、補強のある No. 2 試験体で 1.51、No.3 試験体で 1.48 であった。

キーワード:開口壁,鉄筋コンクリート,補強金物,せん断,変形性能

1.はじめに

鉄筋コンクリート造開口壁のせん断補強は, 通常斜め筋が用いられるが,配筋が複雑になる ことから施工性に優れた補強方法が求められて いる。開口を有する梁については,既に種々の 補強金物による施工性の改善が試みられている が^{1),2)},開口壁についてはこれまで十分な検討 が行われてこなかった。このため,本実験では, 長辺及び短辺をそれぞれ 45cm, 35cm とする2種 類の連続した折れ曲がり鉄筋からなる補強金物 を用いた鉄筋コンクリート造開口壁の曲げせん 断実験を行い,開口壁の耐力,変形性能に及ぼ す効果について調べた。

2. 実験概要

2.1 試験体

表-1 および図-1 に試験体を示す。試験体は 全部で 3 体で,壁は柱型を持たない長方形断面 とした。壁の長さは 90cm,高さ 60cm,壁厚は 10cm で,せん断スパン比は 0.67 である。壁の 開口は,直径 25cm で開口率 0.30 とした。開口 位置は壁中央とした。開口補強は,開口によっ て生じる付加斜張力を負担できる程度とし,補 強金物として 2-D10 を配した。壁筋は縦横等 量で 2-D6@125 (Pw=0.51%) とし,開口端 部はフック付とした。柱筋に相当する曲げ主筋 は 4-D19 (Pt=1.35%) とし、φ6 のフープを 5cm 間隔で配置した。

								_	
	壁寸法			曲げ	主筋	せん断補) 強筋	開口補強	
試験体	L×H×t	孔径	開口率	配筋	Pt	配筋	Pw	金物	配筋
	(cm)	(cm)			(%)		(%)		
No1	90x60x10	25	0.30	4-D19	1.35	2-D6@125	0.512	-	
No2	"	"))))	"	"	"	I	2-D10
No3	"	"	"	"	"	"	"	П	"

表-1 試験体一覧表

*1(株)東海クレオ,工修(正会員)

- ** 大同工業大学教授 工学部建設工学科,工博(正会員)
- *8 愛知工業大学助教授 工学部建築学科,工博(正会員)

2.2 補強金物

図-2 に開口補強金物を 示す。

開口補強金物は、連続した 折れ曲がり鉄筋からなる2種 類の形状のものを用いた。補 強金物は、長辺および短辺を それぞれ 45cm, 35cm とする 2 組の長方形を基本としてい る。金物 I は斜め 45°のひ び割れに対して有効となるよ うに水平軸に対して各辺が 45°となるように2組の長 方形を直行させた。折り曲げ 点の数は 12 である。金物Ⅱ は、鉄筋コンクリート造有孔

梁において十分な耐力と変形性能を発揮した 開口補強金物であり^{1),2)},開口中心上下部を 折れ曲がり頂点とし、長辺及び短辺の傾斜角 度が 45 度を中心として正負同角度だけ回転す るように配置した。開口に接して発生する 30°~45°のひび割れに対して有効とするた め内側鉄筋の角度を52 となるように2組の 長方形を異なる角度に配置したものである。 折り曲げ点の数は11 である。

3. 使用材料

表-2および表-3に使用したコンクリー トの配合および材料特性を示す。コンクリ ート圧縮強度は部材実験時材齢の圧縮強度 とした。実験時材齢の圧縮強度は、30.4MPa であった。

表-4に使用した鋼材の機械的性質を示す。

4. 加力および測定方法

試験体は PC 鋼棒により反力床に固定し, 50tf の油圧ジャッキ2 台により上部梁型中 央高さに正負交番繰り返し加力を行った。 加力は、部材角 (R) =1/1000、2/1000、4/1000、 *0.2%オフセット値 6/1000, 10/1000 で正負 1 回繰り返すこと

図-1 試験体(No.3)

図-2 補強金物

表-2	コン	クリ	I — 1	トの配合
-----	----	----	-------	------

種類	セメント	水	W/C	細骨材	粗骨材	スランプ
	(kg/m ³)	(kg/m ³)	(%)	(kg/m ³)	(kg/m ³)	(cm)
普通	292	178	61.0	832	987	18

表-3 コンクリートの材料特性

養生条件	 材令 圧縮強度 (週) (MPa) 		割裂強度 (MPa)	弾性係数 (MPa)	比重	
現場封緘	13	30. 4	2. 43	0.235×10^{5}	2. 27	

鋼材の機械的性質 <u> 本 _ /</u>

			***			•
ſ	用途	種類	降伏強度 (MPa)	引張強度 (MPa)	ヤング係数 (MPa)	伸び (%)
F	主筋	D19	382	582	0. 187×10^{6}	21.7
ŀ	壁筋	D6	407	539	0.176×10^{6}	23. 2
ŀ	金物	D10	451 [*]	586	0.206×10^{6}	17.9

を原則とした。ただし、最大耐力付近に達 した場合は、繰り返し加力することなく1 方向に変形約10mmまで加力することとした。 計測は左右ロードセル、中央変位形,鉄筋 歪みで行った。壁の変形は、上下梁間の相 対変形とした。鉄筋のひずみは、曲げ主筋、 せん断補強筋,開口金物の全周について測 定した。金物の歪みは表裏に歪みゲージを 貼りこれの平均した値とした。加力および 測定方法の概要を図-3 に示す。また、 歪 み測定位置を図-4に示す。

---Q +Q 図-3 加力及び測定方法

5. 実験結果

実験結果の一覧を表-5 に示す。鉄筋コンクリ ート造壁のせん断耐力(Qs)の計算には荒川式に 開口低減係数 ³をかけたものを用いた。

5.1 実験経過およびひび割れ状況

最大耐力時のひび割れ状況を図-5 に、試験体の 荷重変形関係を図-6 に示す。開口壁試験体はい ずれも部材角 0.3~0.4/1000 で開口部にせん断 ひび割れが生じた。その後開口周辺に数多くの ひび割れが発生し,開口と壁端部を結ぶ斜めひ び割れの拡大によって, 部材角 6.4~7.0/1000 で最大耐力に至った。最大耐力後は、急速に耐 力低下した。

図-4 歪み測定位置

	曲げ耐力	せ	ん断耐	カ		実験値				比
試験体	Qm	Qs	Qs ₂	Qs ₃	Qc	τς	Qu	τυ	最大時	Qu/Qs
	(KN)	(KN)	(KN)	(KN)	(KN)	(MPa)	(KN)	(MPa)	$(10^{-3} rad)$	
No1	457	295	91.3	270	55.9	0.860	325	5.00	6.83	1.20
No2	457	295	91.3	270	57.1	0.878	406	6.25	6.08	1.51
No3	457	295	91.3	270	49.5	0.762	400	6.16	6.42	1.48
$Q_{1} = (0.068P \text{ te}^{0.23} (\text{Fc}+180) / \sqrt{M} / (\text{QD}) + 0.12) \text{ *be*j} \qquad Q_{32} = (2.7 \sqrt{\sigma} \text{ wh*Pwh}) \text{*be*j}$										

表-5 実験結果一覧表

 $Q_{s1} = (0.068Pte)$ '(Fc+180)/√ M/(QD)+0.12)*be*j Qc:せん断ひび割れ $Q_{s3} = r * (Q_{s1} + Q_{s2})$

No.1 試験体

No.2 試験体 図-5 最大荷重時ひび割れ図

No.3 試験体

- 567 -

5.2 せん断耐力

開口部初せん断ひび割れ時の荷重Qcは49.5 KN ~57.1KN で, せん断ひび割れ応力度τcは最小 壁断面積に対して 0.762MPa~0.878MPa, コンク リートの圧縮強度の 1/39.9Fc~1/34.6Fc であっ た。せん断終局耐力 Qu は 325KN~406KN で, 最 大せん断応力度τuは最小壁断面積に対して5.00 MPa~6.25 MPa, コンクリートの実験時圧縮強度

(30.4Mpa)の 1/6.08Fc~1/4.86Fc であった。 終局せん断耐力は,開口補強されたものの方が 25%ほど高い値を示したが,補強金物の種類に よる違いは大きくなかった。

5.3 変形性状

各試験体の正方向包絡線を,図-7に示す。No.1 試験体,No.2 試験体,No.3 試験体とも部材角 4/1000 では,耐力の低下もなく安定した挙動を 示した。開口補強のないNo.1 試験体は部材角 4/1000 以降変形が増大したが,最大耐力は部材 角7/1000で他の試験体と大きな違いは無かった。 試験体No.2 とNo.3 の変形性状はほぼ同様の傾 向を示したが,部材角1/100 以降ではNo.3 試験 体の方がやや高い耐力を示した。

5.4 開口部のひずみ

図-8, 図-9 に No.2 試験体の開口補強金物 の歪みを示す。部材角 4/1000 に至る過程で金物 内側 (D3, D4) 位置の歪みは降伏歪みに達した。 金物外側 (D13, D14) 位置の歪みは, 最大荷重 に至る過程で降伏歪みに達した。一方,開口補 強金物内側 (D1, D2) および外側 (D11, D12) の歪みは,負加力時に増大するが,前者よりも 低い値を示した。No.3 試験体の補強金物の歪み も同様の傾向を示したが,歪みの値はやや小さ く最大耐力の 80%に耐力が低下する過程で降伏歪 みに達した。また, No.2, No.3 試験体の壁筋も 最大耐力の 80%に耐力が低下する過程で降伏歪み に達した。

5.5 剛性

表-6 に部材角と剛性の関係を示す。せん断 ひび割れ発生時剛性は, No.1 試験体では 23.6 (× 10³kgf/cm²rad) と最も高く, 続いて No.2 試験体

図-7正方向包絡線

の 21.2 (×10³kgf/cm²rad), No.3 試験体の 19.3 (×10³kgf/cm²rad) となっている。せん断ひび 割れ発生以後は No.2, No.3 試験体の剛性はあま り差はみられないが, No.1 試験体の剛性は最も

D13, D14

図-8補強金物の歪み(No.2試験体)

低くなる。最大耐力時及び破壊時では, No. 2, No. 3 試験体は, No.1 試験体に対して約 1.4 倍となっ た。最大変形時の剛性は 3 体ともほぼ同じとな った。最大耐力時から最大変形時にかけて No.2 試験体及び No.3 試験体の剛性低下の比率は,開 口部を補強していない No.1 試験体よりも大きく

D11, D12

図-8補強金物の歪み(No.2 試験体)

なっている。

図-10 に部材角と剛性低下率の関係を示す。 ここでの剛性低下率は,実験時剛性と, 無開口 壁剛性計算値との比を表す。また、実験時変形 は、曲げ変形は小さいものとして含めて考えた。 図中の曲線は無開口壁の部材角と剛性低下率の

		サイクル	せん断ひひ割れ	+1/1000	+2/1000	+4/1000	最大耐力	80% 耐力時	最大変形
	τ	(kgf/cm ²)	8.77	16.2	27.7	42.5	50.9	40.8	21.6
No. 1	R	$(*10^{-3} rad)$	0.267	1.03	2.07	4.05	6.83	11.6	17.1
	K	$(*10^{3} kgf/cm^{2} rad)$	32.8	15.7	13.4	10.5	7.46	3. 53	1.26
	τ	(kgf/cm ²)	8.95	18.9	31.3	48.2	63.6	50.9	21.9
No. 2	R	(*10 ⁻³ rad)	0. 307	1.01	2. 10	4.03	6.08	10.5	17.3
	K	(*10 ³ kgf/cm ² rad)	29, 2	18.8	14.9	12.0	10.5	4.86	1. 27
	τ	(kgf/cm ²)	7.77	17.8	28.8	<u>51. 1</u>	62.8	50.3	22.6
No. 3	R	(*10 ⁻³ rad)	0. 290	1.03	2. 03	4.02	6. 42	10. 3	17.3
	K	(*10 ³ kgf/cm ² rad)	26.8	17.3	14. 2	12. 7	9. 78	4. 90	1.31
T		小聴断面積に対する	成力度	R:変形角		K:剛性			

表-6 各サイクル最大変形時剛性

τ:最小壁断面積に対する応力度

関係 ³⁾を示す。初期ひび割れ時では No.1 試験体の剛性低下率が最も高いが,その 値は No.2 試験体及び No.3 試験体とほぼ 同じである。初期ひび割れ以降は No.1 試 験体の剛性低下率が最も低くなる。No.2 試験体と No.3 試験体の剛性低下率はほぼ 同じ値を示し,最大耐力時では,No.1 試 験体に対して約 1.35 倍であった。図中曲 線に対しては 3 体とも初期せん断ひび割 れ時ではやや低い値となっているが,部 材角 1/1000 以降は図中曲線より大きくな り,最大耐力時には図中曲線に対して No.1

試験体で 2.34 倍, No.2 試験体及び No.3 試験体 で 2.98 倍となっている。最大変形時には再び図 中曲線とほぼ同じ値となっている。有開口の本 試験体は,無開口壁と比べると,初期ひび割れ 時の剛性はほぼ同じで,その後,無開口壁より も低い変形性能を示し,終局時には再び無開口 壁と同様の剛性となることがわかった。

6. まとめ

3体の試験体による鉄筋コンクリート造開口壁の 曲げせん断実験から、次のことが明らかになった。

1)3体の開口壁試験体は,部材角0.3~0.4/1000 で開口部にせん断ひび割れが生じた。その後開口 周辺に数多くのひび割れが発生し,開口と壁端部 を結ぶ斜めひび割れの拡大によって,部材角6.4~ 7.0/1000 で最大耐力に到った。金物の有無による 違いはあまり見られなかった。

 2)3体の開口壁試験体は、開口部初せん断ひび 割れ荷重 Qc は 49.5KN~57.1KN で、せん断ひび割 れ応力度τc は最小壁断面積に対して 0.762MPa~
 0.878MPa、コンクリートの圧縮強度の 1/39.9Fc~
 1/34.6Fc であった。金物の有無による違いはあま り見られなかった。

3)3 体の開口壁試験体のせん断終局耐力 Qu は 325KN~406KN で,最大せん断応力度 τu は壁全体 から開口部分を除いた最小壁断面積に対して 5.00MPa~~6.25 MPa, コンクリートの実験時圧縮 強度の 1/6.08Fc~1/4.86Fc であった。終局せん断

図-10 剛性低下率

耐力は、金物で開口補強された No. 2,3 試験体が No.1 試験体よりも 25%ほど高い値を示したが、補 強金物の種類による違いはほとんどなかった。

4) 無開口壁計算値の終局強度計算値(荒川式× 開口低減率) に対する比は,開口部無補強の No.1 試験体で1.20,補強のある No.2, No.3 試験体で1.51 と1.48 であった。

5)開口部回りの補強筋歪みは、最終加力時まで にほとんどが降伏歪みを超え有効に作用した。

6)開口壁は、無開口壁の剛性低下率曲線に対し て初期せん断ひび割れ時ではほぼ同じ値となるが、 それ以降は剛性低下は小さかった。

参考文献

- 山田和夫、山本俊彦:鉄筋コンクリート造有 孔はりのせん断挙動に関する実験的研究、コ ンクリート工学年次論文報告集、Vol. 19, No. 2, pp. 831-836
- 2) 土田尚子、山本俊彦、山田和夫:鉄筋コンク リート造有孔梁の曲げせん断実験、コンクリ ート工学年次論文報告集、Vol. 19, No. 2, pp. 837-842
- 3) 日本建築学会:鉄筋コンクリート構造計算規 準・同解説, 1991.