論文 水平接合部を含む PCa 耐震壁のせん断耐力に関する研究

川島秀貴"・カストロホワンホセ"・山口輝彰"・今井弘*

要旨:本研究は,主筋後挿入方式を用いた水平接合部を含むプレキャストコンクリート(以下, PCa) 耐震壁のせん断耐力に関するものであり,特に曲げ塑性変形がせん断耐力に与える 影響を調査することを目的としている。PCa 耐震壁に正負の曲げモーメントを与え,十分に 曲げ降伏させた状態で,水平接合部にせん断力を加え,水平接合部を含む PCa 壁のせん断耐 力と滑り量を調べた。水平接合部の破壊形式は,従来の敷きモルタル方式のものとは異なっ た。また,与える曲げ塑性変形が大きくなるとせん断耐力は低下したが,従来の耐力式によ る計算値を上回った。破壊機構に合った耐力式を提案し実験値との適合性を調べた。 キーワード:水平接合部,曲げ塑性変形,シアコッタ,グラウト充填方式

1. はじめに

これまで、敷きモルタル方式の PCa 壁の水平 接合部のせん断耐力式は数多く提案されているが、 壁底面をグラウト材で全充填する方式の PCa 壁 のせん断耐力に関する実験的研究が不足している。 また、実際の最下層の PCa 壁は正負に曲げ降伏 した状態でせん断力を受けるが、水平接合部のせ ん断耐力に関する既往の研究は、一定軸応力下で の単調なせん断加力実験に基づくものが多い。そ こで、本研究では、曲げ降伏型の最下層の PCa 壁の水平接合部を想定し、一定の軸力と正負の曲 げモーメントのみを与え、十分に曲げ降伏させた 状態で、水平接合部にせん断力のみを加え、水平 接合部を含む PCa 壁のせん断耐力を調べた。

2. 試験体と材料の特性

PCa 試験体は表-1 に示すように,計 14 体で ある。14 体の内、8 体は PCa で、6 体が一体打ち (以下,RC) となっている。試験体の外部形状 は、図-1 に示すように全て同一であり、壁部分 は長さ 140cm,厚さ 15cm,内法高さ 70cm であ る。壁部分と加力用上梁とは一体となっている。 壁部分の上部 50cm は、両側に 20cm ずつ張り出

*1 筑波大学大学院生 工学研究科 構造工学専攻(正会員)
*2 株木建設(株) 技術研究所 主任研究員 工博(正会員)
*3 株木建設(株) 技術研究所 主任研究員(正会員)
*4 筑波大学助教授 構造工学系 工博(正会員)

-571 -

表-1 試験体一覧

試験体名	打股方进	曲げ	植力	主肠	シアコッタ	(備考
HJ-1		M=0				
HI-2		M(øy)	0.5		各主筋	(曲げ降伏後の
HI-3		M (3 ¢ y)	(N/mm²)		ごと	水平耐力を
HJ-4		M (5 ¢ y)			100	調べる)
HJ-5	PCa	M=0	2.0	4-D25	×100	(軸力の影響を
HJ-6		M (3 \ \phi y)	(N/mm²)		×20	調べる)
HJ-7		M=0			平滑面	(コッターの有無の
HJ-8		M (3 ¢ y)				影響を調べる)
HJ-9		М (3φy)				(鉛直筋の影響)
HI-11		M=0	(N/mm ²)		体	
HJ-12	RC	M (øy)		16-D13	打ち	(曲げ降伏後の
HJ-13		M (3 \ \ y)				水平耐力を
HI-14		M (5 ¢ y)				調べる)

図-1 試験体外部形状

し、さらに補強して破壊しないように設計してある。壁の底面である水平接合面には、各シース管 をつなぐように、グラウト圧入用の溝が設けてあ る。

HJ-1~6では、各シースの位置に、図-2に示 すような凹状のシアコッタを設けて、この部分は 接合時にグラウト材によって充填される。HJ-7 と8では溝のみを設けた。加力の変動因子は、繰 り返し曲げによる曲率(塑性率)と軸力である。 さらに水平接合部のないRC壁との比較も行った。

配筋は全ての PCa 試験体共通で,主筋に 4-D25 (SD345)を,壁の縦筋(水平接合部より上に配 筋)に 8-D13 (SD345) @200 ダブル,横筋に 4 -D13 (SD345) @200 ダブルを用いた。主筋に は試験体下端より上端まで,連続した一本の鉄筋 を用いた。PCa 壁では,主筋位置にシース管(内 径 42mm,山高さ 2mm)を配した。HJ-9 の配筋 は,シースが無い点を除くと PCa 試験体と同じ である。ただ,打設方法のみが異なり,壁を横に して打設した。HJ-11~14 では主筋はなく,壁の 縦筋に 8-D13 (SD345) @200 ダブルとし,下梁 まで連続して配筋した。

試験体の接合は、①下梁の設置、②主筋の挿入、 ③下梁のグラウト材の注入、④PCa 壁の設置、⑤ 水平接合部周辺のシール、⑥グラウト材の圧入、 という手順で行った。なお、グラウト材は、水平 接合部中央に設けた注入口に通じるパイプより、 水平接合部とシース管に同時に圧入した。

表-2に鉄筋,コンクリート,及びグラウト材 の材料試験結果を示す。

表-2 材料試験結果

<u>(a) 鉄筋(単位: N/mm²)</u>								(t	。) グラウト	(単位	<u>L:N/mm²)</u>	
ſ	径	刔	賂	σy	σb	$E(\times 10^{5})$	備	考		試験体	下梁	PCa壁部
Γ	D25	SC)345	382	567	1.94	主統(H.	F1~9)		7日	61.3	60.0
	D13	SC)345	372	552	1.90	₩損筋()	tJ-1~9)		28日	75.9	75.8
L	D13	SC)345	376	539	1.82	載損筋(H.	<u>⊢11~14)</u>		試験日	75.6	71.9
-	(c) コンクリート (単位: N/mm ²)											
ľ	試験	体	4遥		、験日	試験体	に 4週	試験日		試験体	4週	試験日
	HJ-	1	31.4	4	32.6	HJ-6	30.4	34.0		HJ-11	33.3	32.5
I	HJ-	·2	31.4	4	33.2	HJ-7	31.4	33.0		HJ-12	33.3	35.2
	HJ-	-3	30.4	4	31.3	HJ-8	31.4	32.2		HJ-13	31.6	36.9
I	HJ-	-4	30.4	4	31.3	HJ-9	33.6	33.4		HJ-14	31.6	37.7
ſ	HJ-	-5	30.	4	32.4							

3. 実験方法

加力は、曲げ降伏した水平接合部のある PCa 壁 のせん断力の余裕度を調べる目的で、図ー4に示 すように、鉛直方向の中央の 100t ジャッキによ って一定軸応力を与え、また、両側の2基の鉛直 アクチュエータにより正負の繰り返し曲げモーメ ントを与え,試験部分を曲げ降伏させた状態で, 水平アクチュエータにより、水平接合部にせん断 力のみを単調に加えた。水平接合部より上部 200mm 区間の曲率を常に観測しながら、引張側 主筋が降伏したときを曲げ降伏曲率 øy とした。 図-3に示すように、- øy、その後、試験体に 応じて, ± ø y, ±3 ø y, または±5 ø y を正負交 互に2回ずつ繰り返した後、3回目の正側の曲率 まで加え、この時の曲げモーメントを保持しなが ら、水平せん断力のみを単調に増加して、最終ま で破壊した。HJ-1、5、7 及び 11 では曲げを与 えないで軸応力のみを加えた状態で、せん断力を 単調に増加した。

水平接合部の滑り量δ(5 ヶ所)と壁下部 20cm の曲率, せん断変形, 及び主筋の歪を測定した。

図-3 加力履歴

4. ひび割れ状況

最大荷重時におけるひび割れ状況を,図-5に 示す。曲げ降伏させる試験体の場合,正負の繰り 返し曲げモーメントを与えていくと,接合部でひ び割れが貫通し,ひび割れ幅が5~8mm まで拡が った。曲げ塑性率が大きいほど壁圧縮端に破壊が 集中した。曲げを与えないものでは全体に均等に 激しくせん断ひび割れが入り,水平接合部直上の 全域にわたってコンクリートの斜め圧縮破壊が見 られた。PCa壁のせん断ひび割れの方が RC 壁よ り少し激しかった。

図-5 ひび割れ状況

5. せん断カー滑り量関係

5.1 曲げ塑性率による影響

曲げ塑性率々の違いによる影響についてみると, 図-6 に示すように,曲げ塑性率の量が大きいほ ど,せん断耐力が低下し,同時に最大耐力時の滑 り量が大きかった。また,曲げを与えない HJ-1 は最大耐力を示した後,脆性的に破壊しているの に対し,曲げ塑性率の大きいものでは,最大耐力 に達した後も耐力の低下は小さい。RC 壁におい ては,最大耐力後,耐力が急激に減少した。

5.2 軸力による影響

軸応力の影響について見てみると,図-7 に示 すように,高軸応力の HJ-5 と 6 は,低軸応力の HJ-1 と 3 より約 10~20%高いせん断耐力を示し た。また,高軸力のものは最大耐力時の滑り量が, 低軸力のものに比べ,約半分になっている。これ は、軸力が高い場合には、コンクリートの摩擦に よる効果が大きくなるためと考えられる。

5.3 シアコッタの有無による影響

コッタによる影響についてみると、図-8 に示 すように、コッタの有る HJ-1 と 3 は無い HJ-7 と 8 に比べ、曲げ変形を与えない場合で約 44%、与 えた場合で約 24%高いせん断耐力を示した。コッ タを持たず、曲げを受けない HJ-7 は、コッタ を持ち、5 ¢ y まで曲げを受けた HJ-4 (図-6(a)) 程度の耐力しかなく、コッタがないために明らか に耐力低下が見られた。

5.4 PCa 壁と RC 壁の比較

PCa 壁と RC 壁を比較してみると, 図-9 に示 すように最大耐力に達するまでは, どちらもほぼ 同様の挙動を示した。その後, RC 壁はコンクリ ートが斜め圧縮破壊したため,急激に耐力を失い, 脆性的に破壊した。一方, HJ-3 では, 緩やかに 耐力が上昇し, 滑り量約 4mm で最大耐力を示し た後も, 大変形にわたり耐力を保持した。コッタ のある PCa 壁 (HJ-3) の最大耐力は RC 壁 (HJ -9) とほぼ同じであったが, そのときの変形量 は PCa 壁の方がかなり大きかった。コッタのな い PCa 壁 (HJ-8) (図-8) は RC 壁より 2 割ほ ど低い耐力を示し, かつ変形量も大きかった。

図-9 PCa 壁と RC 壁の比較

6. 既往の耐力式による計算値との比較

水平接合部のせん断耐力の実験値と既往の耐力 式による計算値を表-3 に示す。実験値について は、最大耐力及びその時点の水平接合部の滑り量 を示した。また、滑り量δ=2mm での耐力も示し た。実験式(1)~(3)は、敷きモルタル方式を用い、 一定軸応力下での単調せん断実験に基づいて提案 された式であり、曲げによる効果が入っていない。 式(1)と(2)については建築学会式¹⁾を用いた。式(3) は望月や槇谷 2)らによるもので、式(2)のうち主 筋の効果をダウエル効果と摩擦効果に分解したも のであり、ほぼ同じ値を示している。

曲げ塑性率の影響についてみると、曲げを与え ない HJ-1 の水平接合部のせん断強度の実験値は 計算値を 1.4 倍以上上回った。与える曲げ塑性率 を大きくするほど耐力が低下し、曲げ塑性率を 5 φy とし、十分に曲げ降伏させた HJ-4 では実験 値は式(2)や(3)による計算値より約 10%小さいが、 式(1)の値よりは大きい。

上述したことは、従来の水平接合部の研究成果 と比較すると全く逆の内容である。既往の研究に よると、曲げを与えることは、水平接合部のせん 断耐力の上昇に有効であると報告されていること が多い。しかし、これらの研究では、敷きモルタ ル方式の水平接合部に、一定の曲げを与えた実験 より導かれている。本研究では、水平接合部にコ ッタを設けグラウト材を充填する方式を用いてお り、また、正負の曲げ塑性変形を与えた後せん断 力を加えている。このため、最大耐力は水平接合 部の滑りでなく、水平接合部直上の壁コンクリー トの斜め圧縮破壊によって決定している。 軸力による影響についてみると、高軸力で曲げ 変形を与えないHJ-5では、最大耐力は式(1)~式(3) による計算値を大きく上回った。しかし、曲げ変 形を3φy与えたHJ-6では、最大耐力が小さくな り、式(2)と式(3)による計算値を下回った。

シアコッタによる影響については、3øy まで 曲げを与えた HJ-8 の耐力は、式(2)と式(3)による 計算値を少し下回った。

<u>_x v</u>			- OF WHI	F E - 7		V LLAX	
試験体	最大	射力時	Q(t)	計算值 Q(t)			
番号	Q(t)	δ (mm)	(ð=2mm)	式(1)	式(2)	式(3)	
HJ-1	140.8	1.03	135.2	62.7	102.9	106.2	
HJ-2	108.0	1.02	107.4	62.7	103.1	106.4	
HJ-3	100.7	4.11	93.3	62.7	102.3	105.7	
HJ-4	94.2	6.62	78.8	62.7	102.3	105.7	
HJ-5	170.1	1.33	167.8	84.8	134.3	128.8	
HJ-6	111.1	2.58	108.0	84.8	135.0	129.3	
HJ-7	98.0	1.47	94.6	62.7	89.6	94.2	
HJ-8	80.9	5.68	72.5	62.7	89.6	94.2	
HJ-9	98.0	1.49	93.2	62.7	89.6	94.2	
HJ-11	146.7	0.83	-				
HJ-12	111.8	1.06	107				
HJ-13	87.2	1.17	-				
HJ-14	66.7	1.86	56.4				

表-3 既往の耐力式による計算値と実験値との比較

 $Q_u = 0.7 \times (\sigma y \times \sum a_s + N)$ -----(1)

 $Q_u = 0.1 \times F_c \times A_c + a_s \times \sigma y + N$ (2) $Q_u = 0.09 \times F_c \times A_c + 1.28 \times a_s \times \sqrt{\sigma y \times F_c}$

+0.54×A_s×oy+0.84×o_n×A------(3) oy,a_s(A_s):鉛直主筋の降伏強度と断面積 F_c,A_c:コッタのコンクリート強度と面積 N(= o_n×A):軸力

7. PCa 壁が斜め圧壊する時の耐力式の提案

本実験では,壁コンクリートの斜め圧縮破壊に より試験体が破壊した。そこで,コンクリートの 斜め圧縮破壊により決まるせん断強度を求めるこ とを試みた。

最初に、水平接合部に曲げを与えない場合を考 える。トラス機構によるコンクリート圧縮束角度 θ はひび割れ図より、45°と仮定する。そのため 引張端より 20cm は、斜め圧縮応力 $c\sigma$ は作用し ていないものとする。

図-10(b)に圧縮斜材の一部を図示する。厚さ t の断面ABに生じる力*N*は,式(4)で表される。

$$N = \sigma \times \frac{dx}{\sqrt{2}} \times t \quad (4)$$

長さd x の水平接合部でのせん断応力τは,式 (5)で表される。

$$\tau = \frac{N}{\sqrt{2}} \times \frac{1}{dx \times t} = \frac{c\sigma}{2} \quad \dots \quad (5)$$

このせん断応力 τ に水平接合部の接着面積 $Xn \times t$ をかけ、壁コンクリートによって伝達さ れるせん断耐力 Q_c は式(6)によって求まる。曲げ がないので、 $Xn = \ell$ -20=120cm となる。

 $Q_c = \tau \times X_n \times t$ ----- (6)

壁コンクリートが斜め圧壊する際に示すコンク リートの強度 σ (N/mm²)は、式(7)に示す有効強 度係数 vを掛けることにより求める。

$$\upsilon = 0.7 - \frac{\sigma_B}{200} \quad \dots \qquad (7)$$

次に曲げを受ける水平接合部を考える。 水平接合部が繰り返し曲げ変形を受けることによ り,引張側端部ではひび割れ幅が徐々に大きくな り,せん断力を与え始めるときには完全に浮き上 がることが実験で確認された。

図-11 曲げ変形を受ける水平接合部

コンクリートの圧縮域*Xn*では,式(6)を用い てコンクリートが負担するせん断強度 Q。を求め る。この際,引張側鉄筋は全て降伏しているもの とし,圧縮側となった鉄筋の効果は無視した。 さらに、引張城 (ℓ - Xn) では鉄筋及びコッ タがせん断力を負担していると仮定し、その強度 は、望月らの提案した(3)式のうちコッタと、鉄 筋のダウエル効果の項を用いて計算する。

本研究ではコッタ内には主筋と共に高強度グラ ウト材が充填されるので、コッタによるせん断力 は、壁コンクリートの支圧強度によって決まるこ とになる。支圧強度 F_{et}は、圧縮強度の2倍と、ま た、ダウエル効果を算出するときのコンクリート 強度 F_{et}には、グラウト材の強度を仮定した。

以上から,壁コンクリートが斜め圧縮破壊する 場合の耐力 Q.は式(8)により算出される。

$$Q_s = F_{c1} \times A_{c1} + 1.28 \times a_s \times \sqrt{\sigma_y \times F_{c2}} + Q_c - (8)$$

表-4に、計算結果と実験値を比較して示す。

曲げ塑性率がせん断耐力に与える影響について 図-12 に示す。PCa 試験体 HJ-1~4 では,計算値 は実験値にかなり近い値を示し,曲げ塑性率が大 きくなるとせん断耐力が低下していく傾向も示し た。RC 試験体 HJ-11~14 についても,計算値は 実験値に近い値をとり,同じ傾向を示した。

次に,軸力の影響について図-13 に示す。計算 式との整合性もよく,また,曲げ塑性率を0から 3 とした場合の耐力減少の傾向はどちらも同様の 傾向を示した。

コッタの影響については図-14に示すように, 曲げを与えていない HJ-1 と 7 では計算値は実験 値より大きくなった。特に, コッタの無い HJ-7 では,計算値は実験値より非常に大きくなった。

— 575 —

この理由の一つとして、コッタが無くても曲げが 無い HJ-7 では水平接合部では全面接着している と仮定しているので、大きな計算値になる。一方、 曲げを受ける HJ-8 では、溝の側面での摩擦の効 果が取り入れられていないため、摩擦の効果が過 小に評価されてしまうものと思われる。

総合的に見て、シアコッタを有し、グラウトを 全充填する水平接合部を含む PCa 壁に対しては、 本実験において提案した式は、敷きモルタルの水 平接合部を対象とした従来の耐力式と比べ、実験 結果と良い整合性を示した。RC 壁の HJ-13 で、計 算値が実験値よりかなり小さくなっているのは、 耐力式の Qc を算出する時に必要な X_nが、実測曲 げモーメントに基づいて算出されており、その実 測曲げモーメントだけが計算値よりかなり大きか ったためである。

表-4 本提案式によるせん断耐力

と実験値の比較 (単位:tonf)

試験体	実験値	提案式による計算値							
		合計	第1項	第2項	第3項				
HJ-1	140.8	159.9	0.0	0.0	159.9				
HJ-2	108.0	120.4	19.0	22.0	79.4				
HJ-3	100.7	93.5	26.8	32.9	33.7				
HJ-4	94.2	83.3	26.8	32.9	23.6				
HJ-5	170.1	159.2	0.0	0.0	159.2				
HJ-6	111.1	95.7	29.1	32.9	33.6				
HJ-7	98.0	161.2	0.0	0.0	161.2				
HJ-8	80.9	67.1	0.0	32.9	34.2				
HJ-9	98.0	48.6	0.0	29.9	18.7				
HJ-11	146.7	159.6	0.0	0.0	159.6				
HJ-12	111.8	110.5	0.0	22.9	87.6				
HJ-13	87.2	58.5	0.0	23.5	35.0				
HJ-14	66.7	67.9	0.0	27.7	40.3				

8. 結論

主筋後挿入方式を用いる水平接合部を含む PCa 壁のせん断耐力に関し、次のような知見を得た。

- (1) 曲げ塑性率が水平接合部を含む PCa 壁や RC 壁のせん断耐力や最大耐力時の変形量に大 きな影響を与える。
- (2) 高軸力を受けている水平接合部を含む PCa 壁のせん断耐力は,低軸力のものより大き くなるが,最大耐力時の変形量は小さく, また,最大耐力後,急激に耐力が低下した。
- (3) コッタを設けない場合,水平接合部を含む PCa壁のせん断耐力は減少した。また,大き な曲げ塑性変形を受けた後でも、コッタを 設けたものの方が,最大耐力時の滑り量は 小さかった。
- (4) コッタを設けた PCa 壁は一体打ちの RC 壁 とほぼ同じ最大せん断力を示した。最大耐 力後,一体打ちの耐力低下は急激であった のに対し,PCa壁のものは緩やかであった。
- (5)水平接合部の既存の耐力式(敷きモルタル 方式によるもの)による値と比べ、グラウ ト充填方式の水平接合部の最大耐力が大き かった。
- (6) 提案した耐力計算値は実験値にかなり近い 値を示した。また,曲げ塑性率を大きくし ていくと,耐力が減少する傾向も示した。

参考文献

- プレキャスト鉄筋コンクリート構造の設計と施工、日本建築学会、昭和 61 年 10 月 25 日、第一版
- 2) 望月重, 槇谷栄次, 永坂具也:壁式プレ キャスト構造鉛直接合部のせん断耐力, 日本建築学会構造系論文報告集,第 424 号, 1991 年 6 月, pp.11