論文 壁式 PCa 構造における基礎ばりの PCa 化と鉛直接合部に 関する実験研究

筏井文隆*1・小林克巳*2・新井勇作*3・山下能弘*4

要旨:施工精度の向上のために基礎ばりの PCa 化が有効である。本論では鉛直接合部のせ ん断力伝達に関して,主にコッター形状と個数をパラメータとしたせん断実験を行い,剛 性,耐力等に及ぼす影響を調べ,在来一体打ち工法と同等な性能を有する接合方法について 検討した。その結果,せん断型に分類されるコッター形状とすれば,一体打ちと同等の性能 を発揮することがわかった。しかし,既往の壁式 PCa 上部構造の設計式を適用し,せん断型 コッターとして接合部の許容せん断力を算定すると,安全側の評価にはなるが,コッターの 破壊モードが対応せず,不合理な評価となることがわかった。

キーワード:壁式 PCa 構造,基礎ばり,鉛直接合部,コッター,せん断耐力

1. はじめに

壁式 PCa 構造においても、基礎は一体打ちの 鉄筋コンクリート造としなければならない^{1).2)}。 しかし、基礎部分を PCa 化すれば施工精度の向 上を図ることができ、高品質の建築生産が可能 となる。過去にも同様の開発研究が行われてお り^{3).4},在来一体打ちとの比較が行われている。

図-1 に工法の概要を示す。基礎ばりのみを PCa部材として製作し,基礎スラブは現場打ち の鉄筋コンクリート造とする。基礎ばりの鉛直 接合部は、上部耐力壁パネル鉛直接合部の真下 に設け、開口部下には設けない。すなわち、基 礎ばり鉛直接合部上には耐力壁あるいは壁柱が 存在することになる。したがって、基礎ばり鉛 直接合部では曲げの影響は少なくなる。

基礎ばりと基礎スラブの水平接合部にはコッ ターが設けられるが、上部構造からの応力は基 礎ばりのみで負担し、基礎スラブについては軸 力を分散して地盤に伝え、分布接地圧を得られ ればよいと考えている。

本論では鉛直接合部のせん断力伝達に関し て,主にコッター形状と個数をパラメータとし

*1 福井大学大学院 工学研究科システム設計工学専攻 工修(正会員)

- *2 福井大学教授 工学部環境設計工学科 工博(正会員)
- *3 木内建設(株)開発部開発課課長(正会員)

*4 木内建設(株)開発部開発課主任

たせん断実験を行い,剛性,耐力等に及ぼす影響を調べ,在来一体打ち工法と同等な性能を有 する接合方法について検討した。

2. 実験概要

2.1 試験体

試験体形状を 図-2 に示す。試験体の断面せ いは約 1/4 モデル 450mm とし,幅は 1/2 モ デル 125mm とした。鉛直接合部は試験体中央 158mm の区間に設けた。主筋,コッター筋 は、本来は溶接継手を用いて接合するが、溶接 継手が鉛直接合部の性状に与える影響は少ない と判断し、本実験では通し鉄筋とした。試験体

表一1 試験体一覧

数は, 表-1 に示す 10 体(一体打ち 2 体を含 む)とした。コンクリートの設計基準強度は Fc = 210kgf/cm² とし,主筋には SD345,補強筋に は 溶接金網用鉄線(@SWM-P)を定用した。コン クリートおよび鉄筋の材料特性を 表-2,表-3 に示す。試験体のコンクリート打設は,実験 時期に合わせて,(AS-0~5)と(AS-10~13)の 2 回に分けて行った。

表-2 コンクリート材料特性

試験体名		主筋	主筋比	補強筋	補強訪比	コッター				
No.	呼び名	(SD345)	Pt(%)	(SWM-P)	Pw(%)	形状	個数	深さ(mm)	コッター筋	
AS-0	一体打					-	—	_		
AS-1	波3						3	-	6-4.5 <i>¢</i>	
AS-2	波4	3-D13	0.753	6-4.5 <i>¢</i>	0.339	波形	4	-	8-4.5 <i>¢</i>	
AS-3	波3'						3	-	66.0 <i>¢</i>	
AS-4	浅箱3					箱形	3	11.7	6-4.5¢	
AS-5	浅箱4						4	11.7	8-4.5 <i>¢</i>	
AS-10	一体打					-	. –	-	-	
AS-11	深箱3						3	16.8	6-4.5¢	
AS-12	深箱4	3-D13	0.734	7-6.0φ	0.703	箱形	4	16.8	8-4.5 <i>¢</i>	
AS-13	連箱						連続	15.0	8-4.5 <i>¢</i>	

試験 打設 圧縮強度 圧縮強度 ヤング係数 割裂強度 (kgf/cm²) 時至(μ) (kgf/cm²) (kgf/cm²) 体名 箇所 AS-接合部 291 2480 2.29×10⁵ 25.4 2130 2.00×10⁴ 0~5 本体部 206 21.3 AS - 接合部 229 1950 2.15×10[•] 18.3 10~13 本体部 178 1870 1.88×10 16.9

表--3 鉄筋材料特性

種別	降伏強度	引張強度	ヤング係数				
	(kgf/cm ²)	(kgf/cm ²)	(kgf/cm^2)				
D13	3990	6070	1.91×10 ⁶				
D13*	4020	5780	1.85×10 ⁶				
4.5 <i>\phi</i>	5020**	5820	2.10×10^{6}				
6.0 <i>\phi</i>	6040**	6500	2.09×10^{6}				
*AS-10~13に使用 **0.2%耐力							

図-3 接合部詳編

2.2 実験パラメータ

実験パラメータは、主にコッター形状(箱形, 波形,連続箱形)とその個数とした。箱形コッ ターに関しては、コッター深さ(11.7 mm, 16.8 mm)もパラメータに加えた。なお、図-3に示 すように、箱形コッターとは上部耐力壁パネル の鉛直接合部に用いる支圧型コッターである。 波形は,製作の容易さを考えたもので,支圧面 積が大きくなるが,接合面ですべりが生じる と,剛性低下が大きくなることが心配される。 箱形コッターの深さと数をさらに増やしていく と,連続箱形となり,プロポーション的にはせ ん断型コッターとなるので,従来の規準類¹⁾を適 用すると許容せん断力が低く算定される。

2.3 実験方法

連続ばり形式とし、接合部を含む区間が逆対称曲げモーメント状態になるようにして、載荷を行った。加力方法および加力装置を図-4,図-5に示す。せん断スパン比は、M/Qd = 0.56である。加力点位置に取り付けたゲージホルダー間の変位を、変位計を用いて測定し、これを相対変位とした。また、図-6のように接合部目地の開きとずれをπゲージを用いて測定した。加力制御は、以下の項目に示す設計における検討用せん断力時の荷重で、正負一回ずつ

- ① ひび割れ以前
- ② ①と③の中間
- ③ 接合部の短期検討用せん断力(RQ)
- ④ 接合部の終局検討用せん断力(Qvu)
- ⑤ はりとしての終局せん断耐力(Qsu)

RQ(支圧型コッター), RQ(せん断型コッター), Qvu(支圧型コッター), Qvu(せん断型コッター), Qsu(荒川mean式)の算定式を式(1) ~ 式(5)に示 す。

_R Q(支圧型) = A·f _{cs} ·n	(1)
_R Q(せん断型) = B・f _{ss} ・n	(2)
Q _{vu} (支圧型) = 0.8F _c ·A·n + Σ(av·σν)	(3)
Q _{vu} (せん断型) = 0.1F _c ・B・n + Σ(av・σ y) (4)
$Q_{su} = \left\{ \frac{0.068 \cdot P_{t}^{0.23} (F_{c} + 180)}{M/Qd + 0.12} + 2.7 \sqrt{P_{w} \cdot \sigma_{wy}} \right\}$	b•j
226.	(5)
A:コッターの支圧面積(cm²)	
B:コッターのせん断面積(cm²)	
n :コッターの個数	
Fc:コンクリート設計基準強度(kgf/cr	m²)
$f_{cs}: 0.8Fc$	
$f_{ss}: 20 \ (kgf/cm^2)$	
av:コッター筋の断面積(cm ²)	
σy:コッター筋の強度(kgf/cm²)	
Pt:引 張鉄筋 比(%)	
Pw:補強筋比	
σ _{wy} :補強筋強度(kgf/cm ²)	
b : はり幅(cm)	
i:応力中心間距離(cm)	

 $Q = 0.804 \cdot P \qquad \tau = Q/(b \cdot j)$

図-4 加力方法

図-6 目地の開きとずれの測定方法

3. 実験結果

各試験体のせん断力(Q)・相対変位(δ)関係の 包絡線を 図-7 ~ 図-9 に示す。図-7 は, 箱形と波形のコッター形状の違いについて検討 したのもので,コッター数が3の試験体を示し た。図-8 は,コッターの個数について検討し たものである。図-9 は,コッター深さの効果 について検討したものである。

3.1 刚性低下

一体打ちの試験体では,曲げ初亀裂と,加力 点を結ぶ線上に発生するせん断ひび割れによっ て,剛性が大きく変化する。接合部を有する試

験体でも、一体打ちの曲げ初亀裂や、せん断ひ び割れの発生に相当する剛性の変化がみられ る。これらを O1, O2 とし, O1 と原点を結ん だ直線の傾きを初期剛性(K1)とし, O1 と O2 を 結んだ直線の傾きを第二剛性(K2)とした。各試 験体の O1, O2 に対応するせん断力(Q), 相対 変位(δ)と, K1, K2 の一覧を 表-4 に示す。な お, K1, K2 については、一体打ちを 100 とし た場合の指標値も示した。

図-7 にみられるように、波形は箱形よりも 早い段階で剛性が低下している。浅箱3,4のO2 点のせん断力が約 10tf であるのに対し、波 3,4,3'の O2点のせん断力は約 6tf である。し たがって、波形は箱形にくらべ早期に剛性が低 下しており、一体打ちのものと同等な性能を得 ることはむずかしいと考え、コッター形状とし ては箱形のものがよいと判断した。以後の検討 は波形を除いて行う。

図-8をみるとコッター数の増加によって, 剛性が一体打ちのものに近づいていくことがわ かる。コッター数が3から4になると,コッ ター深さによらず,K2の指標値は約1.5倍に なっている。さらにコッター数が多くなる連続 箱形試験体のK2は一体打ちと同等の値を示し た。

コッター深さが深くなることでも剛性は一体 打ちに近づいていくことが 図-9 よりわかる。

表-4 各試験体の剛性一覧

試験件名		Oı		O ₂		初期剛性(K ₁)		第二則性(K2)	
No.	呼び名	Q(tf)	ð (mm)	Q(tf)	ð (mm)	(tf/mm)		(tf/mm)	
AS-0	一件打	5.89	0.09	9.97	0.30	65.4	100	19.5	100
AS-1	被3	3.31	0.08	6.03	0.20	40.1	61	23.2	119
AS-2	波4	3.04	0.08	5.79	0.23	39.1	60	18.7	96
AS-3	波3'	3.77	0.08	5.97	0.17	47.2	72	25.6	131
AS-4	浅精 3	5.27	0.11	10.8	0.73	47.9	73	8.9	46
AS-5	浅精4	3.68	0.10	10.5	0.60	36.8	56	13.5	70
AS-10	一件打	5.02	0.11	7.60	0.20	45.6	100	28.7	100
AS-11	深箱 3	3.53	0.09	7.25	0.35	3 9 .2	86	14.3	50
AS-12	深箱 4	4.39	0.13	6.74	0.24	33.8	74	21.4	74
AS-13	連精	4.19	0.09	6.49	0.16	46.6	102	32.9	115

コッターが深くなると、浅いものに比べ K1 の指 標値は約2~3割大きくなり、コッター深さが 深く、数の多くなる連続箱形のものは、K1、K2 とも一体打ちと同等の値を示した。 ほど、また、コッター深さが深いほど剛性が一 体打ちに近づくことになる。

3.2 設計における検討用せん断力

せん断耐力実験値および計算値 Qau(式(5))と, 接合部の短期検討用せん断力 RQ(式(1),式(2))お よび接合部の終局検討用せん断力 Quu(式(3),式 (4))を表-5に示す。Qvuおよび RQは, コッ ター数に比例した値となる。コッター数が3と 4のものについて、せん断耐力を比較すると、 コッター数に比例した値を示していない。しか し、コッター深さが深いものは、比較的コッ ター数の比例に近い値を示した。連続箱形コッ ターの場合、実験値は一体打ちと同等のせん断 耐力を示しており、 せん断型コッターとして RQ(式(2))やQvu(式(4))を適用するとかなり安全 側の評価となる。

3.3 破壞性状

加力スパン内での最終ひび割れ状況を図-10 に示す。破壊状況は、コッターの個数によって 図-11 に示す 3 種類のパターンに分類でき る。パターンIは、コッター数3の試験体に多 くみられたもので、せん断ひび割れは接合部の 目地に沿って長く伸び、破壊には接合部のずれ が大きくともなった。コッター数が4になる と、パターンⅡのように,接合部に沿うせん断 ひび割れは短くなり、最終破壊時における接合 部のずれは、パターンIのものよりも少なく なった。連続箱形までコッター数が増加し, コッターが深くなると、せん断ひび割れは一体 打ちにみられるように、パターンⅢの加力点間 を結ぶ斜めひび割れとなった。

3.4 目地の開きとずれ

短期検討用せん断力 RQ(式(1),式(2))時におけ る接合部の開きおよびずれの最大値を表-6に 示す。連続箱形試験体の場合, RQ(式(2))の値が 低くなるため、はりとしての短期許容せん断力 QA⁵時の値も示し、比較した。連続箱形試験体 は RQ時で, 開き0.02mm, ずれ0.006mm であ り、QAのときでも開き0.16mm, ずれ0.27mm

以上のことから、コッターの個数が多くなる 表-5 せん断耐力実験値と設計における 検討用せん断力計算値

試験体名		せん新耐力(tf)			検时用せん町力(tf)			
No.	呼び名	Q _{max}	Qsu	Q _{max} /Q _{au}	RQ	Qvu	Q _{max} / _R Q	Q _{max} /Q _{vu}
AS-0	一件打	25.3		1.20	1	1	-	_
AS-4	浅箱 3	19.5	21.1	0.92	4.82	9.64	4.05	2.02
AS-5	浅箱4	20.6		0.98	6.43	12.9	3.20	1.60
AS-10	一件打	24.9		1.05	-	-	—	1
AS-11	深箱 3	22.2	23.8	0.93	8.52	13.3	2.61	1.67
AS-12	深箱4	25.0		1.05	11.4	17.8	2.20	1.40
AS-13	連箱	27.6		1.16	4.00	10.6	6.90	2.60

-623 -

程度であった。他の試験体では、開き 0.04~ 0.23mm, ずれ 0.04~0.41mm であった。連続 箱形のQaは,他の試験体のRQよりもせん断力レ ベルが大きくなるが,目地の開きとずれは他の 試験体とくらべ,特に大きな値ではなかった。

3.5 連続箱形コッターを有する接合部の

許容せん新力

一体打ちのせん断耐力を基準としたときの各 試験体のせん断耐力実験値 Qnax, 接合部の終局 検討用せん断力 Qru(式(3),式(4)),短期検討用せ ん断力 RQ(式(1),式(2))との関係を 図-12 に示 す。連続箱形のものについては,はりとしての 短期許容せん断力 Qa⁵ との関係も示した。

上部壁式 PCa 構造の設計式を適用すると,連 続箱形のものはせん断型で RQ(式(2))が計算され るため、実際のせん断耐力とくらべ、短期許容 せん断力は極めて小さく算定される。連続箱形 試験体では、接合部の目地に大きな開きとずれ が生じていないことから、コッター部では支圧 およびせん断の両者で応力伝達が行われてお り、大きなコッター耐力を有しているため、は りとしてのせん断破壊に至ったと考えられる。 したがって、式(2)による短期許容せん断力は、 安全側の値を与えるが、コッターの破壊モード と対応せず、せん断耐力が小さくなる他の箱形 コッターよりも低く算定されてしまい、合理性 に欠けると思われる。

4. まとめ

連続箱形コッターを有する試験体が、剛性、 耐力,破壊形式とも最も一体打ちに近い性能を 示した。ただし、上部壁式 PCa 構造の設計式を 適用して、連続箱形コッターを有する PCa 基礎 ばり鉛直接合部の短期許容せん断力を求める と、安全側の評価にはなるが、コッターの破壊 モードが対応せず、不合理な評価となることが わかった。

今後,連続箱形コッターのせん断力伝達に関 して,解析的手法も用いながら合理的な評価を していく必要があろう。

表-6 目地の開きとずれ

試	會体名	開き	ずれ	
No.	呼び名	(mm)	(mm)	
AS-4	浅箱3	0.042	0.072	
AS-5	浅箱4	0.055	0.043	
AS-11	深箱3	0.111	0.283	
AS-12	深箱4	0.232	0.405	
AS-13	連箱	0.019	0.006	
		0.163*	0.267*	

*Q₄時の値

参考文献

- 1)日本建築学会:壁式プレキャスト鉄筋コンクリート 造設計規準・同解説, 1982
- 2)建設省告示第1319号:壁式鉄筋コンクリート造(壁 式プレキャスト鉄筋コンクリート造を含む。)の技 術的基準第4, 1983.7
- 3)末永保美・石丸麟太郎・斉藤義雄:壁式プレキャス ト鉄筋コンクリート造構面の力学的挙動に関する基 礎的研究,(その14)壁式プレキャスト鉄筋コンク リート地中ばりのプレハブ化に関する実験的研究, 日本建築学会大会学術講演梗概集,pp.1475-1476,1973.10
- 4)三上勇夫・土居健二・池谷建勇・横田克己・末永保 美:壁式プレキャスト鉄筋コンクリート造基礎梁の プレハブ化に関する実験的研究,日本建築学会大会 学術講演梗概集, pp. 1505-1506, 1974.10
- 5)日本建築学会:鉄筋コンクリート構造計算規準・同 解説,16条,式(22),1991