報告 ダム監査廊のプレキャスト化に伴う提体コンクリートとの 一体性に関する検討

牛島 栄*1·辻 誠一*2·石田教雄*3·原田和樹*4

要旨:ダムにプレキャスト (PCa) コンクリート製の監査廊を用いる場合,提体コンクリートとの一体性の確保が重要となる。本報では、両引き試験を実施し、両者の一体性を確保するために必要な打継ぎ部の条件について検討した。その結果、PCa コンクリートの表面を目荒らしする程度で、両者の一体性は十分確保できることがわかった。また、PCa 監査廊模擬試験体を用いて一軸載荷試験を実施し、これが外力に対して十分抵抗できること、PCa 部材の接合部の位置がひび割れ追従性に影響を及ぼすことなどを明らかとした。

キーワード:ダム,監査廊,プレキャストコンクリート,一体性,ひび割れ追従性

1. はじめに

一般に、ダム提体内に建設される監査庫は、現場内で鉄筋・型枠などを組み立て、現場打ちコンクリートで施工される。このような従来工法の問題点として、鉄筋工・型枠工などに携わる熟練作業員の不足が挙げられる。さらに、型枠・鉄筋工に多大な工数を必要とすることから、提体コンクリートの打設工程に制約を受ける場合もある。

近年では、これらの問題を解決する手法として、 監査廊にプレキャスト(以下、PCa)コンクリートを使用する工法が提案され実用化¹⁾されている。 しかし、この工法の場合、PCa コンクリート部と 現場打ちコンクリート部との一体性が確保され なければ、監査廊の所期の目的が達成できない結 果となる。

本報では,実際のダム現場で計画されている PCa 製監査廊の施工に先立ち,両引き試験体および PCa 製監査廊模擬試験体を作製し,PCa コンクリートと提体コンクリートとの一体性などについて検討した。さらに,事前に実施した FEM 解析の結果と本実験結果とを比較検討した。

2. 両引き試験体による一体性確認実験

2.1 実験概要

(1)実験方法

図-1 に両引き試験体の形状および寸法を示す。 両引き試験体は、あらかじめ作製しておいた PCa コンクリートパネルを型枠として、これに D51 の鉄筋を配置した後、後打ちコンクリートを打ち 込んで作製した。次いで、材齢 14 日まで試験体 を封緘養生し、後打ちコンクリートが所定の強度 に達していることを管理用供試体の圧縮強度試 験によって確認した後、ひび割れを導入した。

ひび割れの導入方法は、後打ち(現場打ち)コンクリート中に配置された鉄筋を両側から引張ることによって行った。なお、この場合、PCaパネルと後打ちコンクリートに十分な付着が確保されていなければ、界面での付着切れが生じ、両者のコンクリートの挙動に相違が生じる。そこで、一体性の評価は、後打ちコンクリートに発生したひび割れが PCa パネルへも追随して発生するか否かを観察することによって行った。

なお, 試験体へは加力を 200kN までは約 20kN ピッチ (ステップ) で, その後は 50kN ピッチで

^{*1 (}株) 青木建設 研究所 材料研究室 室長 工博(正会員)

^{*2} 前 農林水産省 会津農業水利事務所 所長 工修

^{*3 (}株) 青木建設 施工本部 土木設計部 工修 (正会員)

^{*4 (}株) 青木建設 研究所 材料研究室 研究員 工修(正会員)

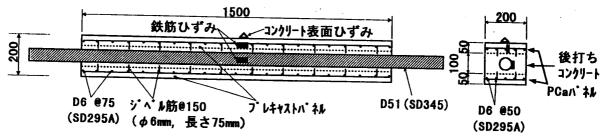


図-1 両引き試験体の形状および寸法

増加させ,各ステップ毎の ひび割れ発生状況, 鉄筋お

よびコンクリートひずみ を測定した。

表-1 両引き試験における実験の水準

試験体名称	打継ぎ部の処理方法
一体型試験体	打継ぎなし(後打ち(現場打ち)コンクリートのみ)
PCa型試験体(ジベル筋あり)	凝結遅延剤とワイヤブラシを用いた目荒らし+ジベル筋挿入
PCa型試験体(ジベル筋なし)	凝結遅延剤とワイヤブラシを用いた目荒らし

(2)実験の水準

打継ぎ部の処理方法が一体性に与える影響に ついて検討することを目的に、打ち継ぎ部の条件 を表1に示す3水準に設定し、実験を行った。な お,表に示されるように,比較用として PCa パネ

表-2 使用材料

材料名	種類・産地など	記号
セメント	早強ポルトランドセメント(比重3.14)	C
細骨材	霞ヶ浦産陸砂(表乾比重2.57, FM2.60)	S
粗骨材	筑波産砕石(表乾比重2.70)	G
混和剤	AE減水剤(リグニンスルホン酸化合物)	ΑE

ルを用いずにコンクリ

ートを一体打ちした試

(3)使用材料およびコン

験体も用いた。

	配合強度			W/C	s/a	単位量 (kg/m³)				
	(N/mm²)			(%)	(%)	w	С	S	G	AE
Pcaハネル	39.3	10	8±2.5	46.5	43.5	178	383	738	1007	0.958
後打ち	21.0	20	8±25	64.0	44 4	161	252	821	1060	0.252

表-3 両引き試験におけるコンクリートの配合

クリートの配合

使用材料は表-2に、コンクリートの配合は表-3 に示す通りである.

2.2 実験結果および考察

(1)コンクリートの力学的特性

両引き試験体の載荷日における封緘養生を施 した管理用供試体の力学的性質を表4 に示す。 PCa コンクリートおよび現場打ちコンクリート ともに、圧縮強度は、表-3に示した配合強度を満 足していた。なお、PCa コンクリートの試験材齢 は28日である。

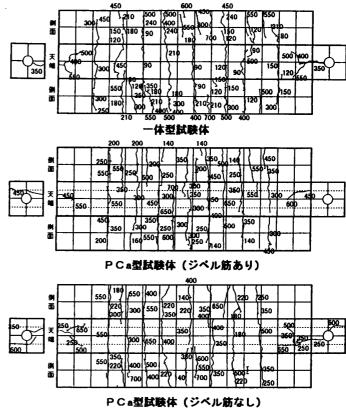
(2)ひび割れ発生状況

各試験体のひび割れ発生状況を図-2に示す。ひ び割れ発生時の荷重は、一体打ちを行った試験体 (以下,一体型試験体)の場合が90kNであった のに対し、PCaパネルを用いた試験体(以下,PCa 型試験体)の場合は、140kN 程度と大きかった。 また、天端部のひび割れ発生状況を見ると、一体 型試験体は約 15cm 間隔でひび割れが発生してい たのに対し、PCa型試験体の場合は約10cm間隔

表-4 コンクリートの力学的性質

	圧縮強度		
の種類	(N/mm²)	(N/mm ²)	(kN/mm ²)
Pcaハネル	46.8	3.0	22.4
後打ち	25.4	1.9	19.9

で発生していた。これは,両者のコンクリートの 引張強度 (表-4参照)の相違に起因するひび割れ 分散性の相違によるものと思われる。


PCa 型試験体の打継ぎ部に注目すると、PCa パ ネル部分と現場打ち部分に発生したひび割れは 連続しており、打継ぎ部分でひび割れが停滞した り、あるいは打継ぎ部に沿ってひび割れが進展す るようなことはなかった。特に、打継ぎ部に到達 したひび割れは,同一の荷重ステップ内で PCa パネルまで進行していることが観察された。これ らの観察結果は、PCa型試験体のジベル筋の有無 には関係なく、いずれの PCa 型試験体においても 同じ傾向を示していた。

以上から,打継ぎ部の処理方法として,ジベル 筋を用いなくても、コンクリート表面をワイヤブ ラシなどで目荒らしをする程度で、十分な一体性が確保できることがわかった。 (3)ひずみ分布

図-3 に、各試験体の中心断面(図-1参照)における D51 鉄筋、D6 鉄筋および コンクリートの表面ひずみを示す。いず れの図においても、ひび割れ発生以前の100~150kN 以下の荷重では、ある荷重に 対して断面内のひずみは全て同じ値となっている。すなわち、PCa コンクリートと後打ちコンクリートが一体となって挙動していることが示されている。

一方、ひび割れ発生以降の荷重では、
ひび割れ発生位置によってひずみ量が大きく変化するため、一体性の有無について明確に言及することはできない。しかし、最終荷重 700kN 付近では、D51 鉄筋のひずみより、D6 鉄筋およびコンクリートの表面ひずみの方が大きな値を示していることから、前項で述べたようにひび割れの停滞や継ぎ目方向への進展はなかったことが、この図からも確認できる。

また、PCa型試験体のひずみ分布に着目すると、 ひび割れ発生荷重の大きさは異なるものの、ひび 割れが発生した後の各断面におけるひずみの挙 動は、ジベル筋の有無に関わらず、各測定位置ご とにほぼ同様な傾向を示している。このことより、 今回の実験の範囲では、ジベル筋の有無が両者の コンクリートの一体性に及ぼす影響は小さいも のと予想される。

PCa型試験体(ジベル筋なし) (図中の数字は荷重(kN)を示す)

図-2 両引き試験体のひび割れ発生状況

3. 模擬試験体による加力実験

3.1 実験概要

(1)実験方法

PCa コンクリートの外力に対する抵抗性と,提体コンクリートとの一体性について模擬試験体(図-4参照)において確認した。

試験体への加力は,試験体の耐力を確認する目的を考慮して,図に示すように試験体天端の3点から加力ビームを介した一軸等分布荷重とした。なお,外力に対する抵抗性,および一体性の確認は、ひび割れ発生状況および試験体や鉄筋のひず

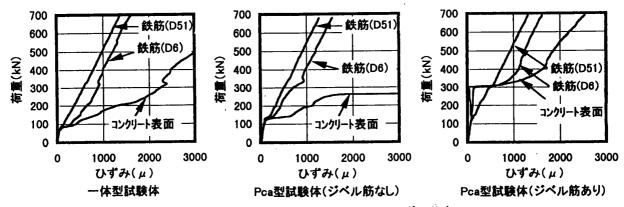
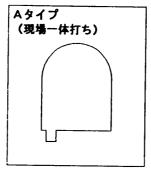
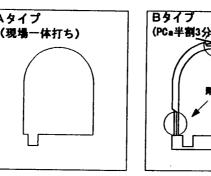
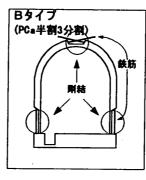


図-3 両引き試験体中心断面におけるひずみ分布

みをなどを測定し、これを後述する一体打ちの試 験体と比較検討することによって行った。また、 実験に先立ち FEM 解析を実施し、試験体各部の ひずみの実験値と解析値とを比較検討した。


(2)試験体の作製


模擬試験体は、図-4に示されるように、矩形断 面中に監査廊を模擬した内空を有する形状とし た。模擬試験体の寸法は、装置の加力能力やクレ ーンの揚重能力を考慮した上で, 実大に最も近い 3/4 スケールモデルとした。なお、試験体は後述 する4水準で行っているが、図4ではその一例と してCタイプの試験体を示している。


試験体は、まず PCa 部分のコンクリートを作製 し、次いでその周りに提体コンクリートを打設し て作製した。ただし、PCa コンクリート底版下へ

は、実施工時の充填件 の確保を目的に高流 動コンクリートを使 用している。なお、こ こでは前章の実験結 果から、打ち継ぎ部の 処理方法として、PCa コンクリートの表面 を目荒らしするのみ とした。また,養生方法 などは、両引き試験体と 同一とした。

試験体の水準は、PCa

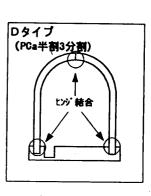


図-5 模擬試験体の水準

表-5 模擬試験体加力実験におけるコンクリートの配合

	配合強度		スランプ	W/C	s/a	单位量 (kg/m³)				
の種類	(N/mm ²)	(mm)	(cm)	(%)	(%)	W	C	S	G	AE
Pcaハネル	39.3	20	8±2.5	42.0	41.9	178	498	214	1029	0.498
提体	21.0	40	8±2.5	66.0	42.6	153	232	803	1129	0.232
高流動"	40.0	20	60 ± 5^{2}	50.0	51.1	185	370	865	861	7.40 ³⁾

部材間の結合方式を変 1)増粘剤 0.4kg/m³使用, 2)スランプフロー, 3)高性能AE減水剤使用量

化させた 3 水準と、比較用として作製した PCa 部材を用いない一体打ち型の計 4 水準 (図-5 参 照)とした。

(3)使用材料およびコンクリートの配合

使用材料は、粗骨材最大寸法 (表-5 参照) を除 き前章の実験と同じである。また、高流動コンク リートには、セルロース系の増粘剤を使用した。 表-5 にコンクリートの配合を示す。

3.2 実験結果および考察

(1)コンクリートの力学的性質

模擬試験体の作製に用いたコンクリートの力

学的性質を表-6に示す。試験は加力試験と同日に 実施し、それぞれのコンクリートの試験材齢は同 表に示した通りである。

反力號

反力治具

1500

図-4 PCa 製監査廊の模擬試験体 (Cタイプ: PCa 門型2分割)

プレキャストコンクリ

छ

750

525

8

8

(奥行き600)

150

150 600

現場打ちコンクリート

(2)ひび割れ発生状況

各試験体のひび割れ発生状況を図るに、また、 各部位のひび割れ発生荷重を表-7に示す。

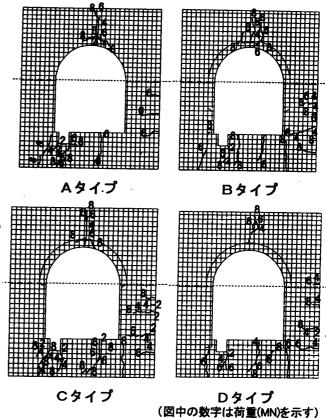
ひび割れの進展状況はいずれの試験体におい ても同様な挙動を示した。すなわち、いずれの試 験体も荷重 1MN で底版側溝部からひび割れが発 生し、その後荷重の増大に伴い、頂部において内 側から外側に向かってひび割れの発生・進展が認

表-6 模擬試験体に用いたコンクリートの力学的性質

コンケリート の種類	圧縮強度 (N/mm²)	引張強度 (N/mm²)		
Pcaハネル	46.1	3.0	2.6	28日
提体	25.3	2.0	2.1	14日
高流動	39.7	2.8	2.0	14日

表-7 各部位におけるひび割れ発生荷重

	A917°	Bタイプ [*]	C\$17°	Dタイプ
頂部	2.0MN	4.0MN	2.4MN	3.0MN
底部	1.0MN	1.0MN	0.8MN	0.8MN
側部	5.0MN	3.2MN	2.0MN	2.5MN


められた。ただし、頂部のひび割れ発生荷重は、 試験体の種類によって異なり(表-7 参照)、 PCa 部材を用いた試験体は一体型の試験体に 比べてその値は大きかった。なお、B および D タイプの試験体の頂部のひび割れ発生荷重が、 他の試験体に比べて特に大きかった理由は、こ の試験体の PCa 部材が頂部で結合された構造 となっているため、ひび割れを観察しにくい状 況にあったことに起因する。また、これらの試 験体では、ひび割れが PCa 部材の背面から発 生していることが確認される。

PCa 製監査廊の断面応力状態を解析した既往の文献²⁾を参照すると,通常の共用状態においては,監査廊の頂部付近は引張応力状態にあることが示されており,一体性の確保が特に重要となる部位であると報告している。一般に,実際のダム提体に作用する荷重は約 2MN 以下であると言われていることから³⁾,そのような荷重状態の下では,図に示したような頂部のひび割れが発生する危険性は低いと思われる。しかし,ダムの変状を観察する意味において,PCa 部材頂部には結合部を設けない方が良いと思われる。

(3)荷重と内空変位の関係

荷重と内空鉛直変位の関係を図-7に示す。内空変位曲線は、PCa部材を用いたいずれの試験体も、一体型の試験体(タイプA)とほぼ同じ曲線上を推移しており、PCa部材の有無が監査廊の内空変位に及ぼす影響はきわめて小さいことがわかった。なお、荷重と内空水平変位の関係においても、これと全く同様な傾向が確認されている。

また、この結果と各試験体のひび割れ発生荷重

図ー6 PCa 監査廊模擬試験体のひび割れ発生状況

に大差がなかったことを考慮すれば、PCa 部材を 用いた監査廊の外力に対する抵抗性は、通常の監 査廊と同程度であると判断することができる。

(4)2 次元 FEM 解析結果と実験結果との比較

2次元 FEM 解析は、各試験体を表8あるいは 図8のようにモデル化して行った。また、実験との整合性を計るために、荷重条件は剛性の高い梁 を介した3点載荷とした。境界条件は、試験体底 部の鉛直方向の変位を拘束し、水平方向の変位は 境界面とのせん断拘束を自由にした。ただし、水 平方向へのモデル全体の移動はないように設定

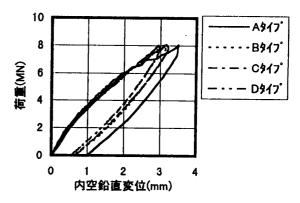


図-7 模擬試験体の荷重と内空鉛直変位の関係

表-8 各試験体の解析モデルの概要

_				
	試験体のタイプ	解析モデル	H	
Ā	:現場一体打ち	接合部を全く設けないモデルとした.	F	1
В	:PCa半割3分割(剛結)	接合部にはジョイント要素を設けて、離散ひび	F	H
C	:PCa門型2分割(剛結)	割れモデルを適用した	<u> </u>	林
1	・ロウェ半割っと対(いぶ)	いぶ如公の更多け 公舗させたエデルとした		_

|D:PCa半割3分割(ヒンジ)|ヒンジ部分の要素は、分離させたモデルとした。| 図-8 側壁付近の解析モデルの例

 (μ)

した。なお,解析に用いた材料の物性値は試験によって得られた値(表-6 参照)などを用いた。

荷重 IMN 時および 2MN 時の頂部鉄筋位置でのひずみの解析値と頂部鉄筋ひずみの実

	荷重	AS		Bタイプ		CS	• •	Dタイプ			
	(MN)	実測値	解折值	実測値	解析値	実測値	解析值	実測値	解析值		
15 da	1.0	24	53	41	19	28	31	18	20		
頂部	2.0	102	110	84	35	69	62	144	114		
スプリング	1.0	-64	-86	-60	-70	-65	-76	-66	-73		
ライン	2.0	-140	-128	-142	-162	-140	-146	-141	-124		
底 版	1.0	6	7	17	7	18	7	21	6		
中心部	2.0	19	6	39	11	33	14	41	18		
底 版	1.0	18	13	13	- 14	10	14	5	20		
側溝部	2.0	45	23	41	28	30	32	21	24		

表-9 鉄筋ひずみの実測値と解析値の比較

測値との関係を表-9に示す。頂部に結合部を有する試験体 (Bタイプおよび Dタイプ) では、解析値と実測値のひずみ量に大差はない。これに対し、頂部に接合部を持たない試験体については、解析値と実測値に差異が生じている。これは、Bおよび Dタイプの試験体の頂部の剛性が小さいのに対し、頂部に接合部を持たない A および Cタイプの試験体は頂部の剛性が加力ビームの剛性に対して無視できない程度に大きく、解析ではその評価が適切に行われなかったことによると思われる。

また、解析では底部の変位を拘束したが、実験では底部には反力治具が備え付けられており、これに多少の変位が生じたことが予想される。このため、底版付近のひずみの解析値と実測値に若干の誤差が生じている。なお、側壁部の解析結果は、載荷点からも支持点からも離れており、境界条件の影響を受けにくかったことから、比較的精度の高い解析結果が得られている。

実際のダム提体内部の解析においては、岩盤面から監査廊が離れているため境界条件の影響を受けにくいこと、監査廊に作用する荷重(水圧や自重など)と監査廊の間に介在物がないことから、今回の実験よりもモデル化しやすい状況にあり、高い精度の解析ができるものと予想される。したがって、今回用いた解析手法を、実際の設計にも十分適用できる可能性があると考える。

4. まとめ

本実験で得られた知見を以下に要約する。

- (1)提体コンクリートと PCa コンクリートの打継 ぎ部分の処理方法として,ジベル筋などを用い なくても,先打ちコンクリートの表面を目荒ら しする程度で,実用上十分な一体性を確保する ことができる。
- (2)監査廊に PCa 部材を用いる場合, ダムの変状 を正確に観察する意味において, ひび割れ追従 性の観点から頂部には結合部を設けない方が 良いと思われる。
- (3)PCa コンクリート製監査廊の外力に対する抵抗性は,現場打ちコンクリートで施工される通常の監査廊と同程度であると判断できる。
- (4)本実験を対象に行った 2 次元 FEM 解析は,実際のダム提体内部の設計にも十分適用可能であると考えられる。

参考文献

- 1)永山 功ほか: 宇奈月ダムにおける通廊のプレキャスト化施工, コンクリート工学, Vol.33, No.8, pp.47-53, 1995.8
- 2) 鷹取正顕ほか: 通廊へのプレキャスト型枠の採用について, ダム技術, No.95, pp.46-56, 1994.8
- 3)駒田憲司ほか:通廊のプレキャスト化に伴う提 体コンクリートとの一体性に関する検討,土木 学会第 52 回年次学術講演会講演概要集,第 6 部,pp338-339,1997.9